Skip to main content
Log in

Model with Coupled Internal and External Channels for 2N and 3N Systems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A Faddeev-type formalism for a three-body problem with two-body interactions containing internal degrees of freedom is introduced. The Faddeev equations for the basic objects such as total resolvent, scattering wave function and transition operators are derived explicitly. As a particular example, the dibaryon model for NN interaction with internal channel corresponding to a six-quark bag is considered. It is shown that this interaction model allows to reproduce both real and imaginary parts of some NN partial phase shifts at energies up to 600 MeV. The developed formalism can be also applied to other quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. From a mathematical point of view, an operator depending on the spectral parameter is not the operator at all, because its domain depends on this spectral parameter. Thus, this object should not be called as a Hamiltonian. However, physicists do not turn their attention to the fact and use energy-dependent interactions very widely.

  2. In terms the dibaryon model the case (a) corresponds to including a single six-quark state in internal channel, while in the case (b) the internal channel includes also the motion of a meson inside the cloud of the dressed six-quark bag and \(t^\mathrm{in}\) is a kinetic energy of the meson [28].

  3. It was referred to as a “dressed bag model” in our previous papers [27,28,29,30].

  4. The parameter \(\rho \) reflects the inelasticity of the S-matrix above the pion-production threshold and is related to the Arndt parametrization of the K-matrix [52]. For the partial NN channels without tensor couplings, \(K=\tan \delta +i \tan ^2\rho \).

References

  1. F.J. Dyson, N.-H. Xuong, Phys. Rev. Lett. 13, 815 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Clement, Prog. Part. Nucl. Phys. 93, 195 (2017)

    Article  ADS  Google Scholar 

  3. I.P. Auer et al., Phys. Lett. 67B, 113 (1977)

    Article  ADS  Google Scholar 

  4. I.P. Auer et al., Phys. Lett. 70B, 475 (1977)

    Article  ADS  Google Scholar 

  5. K. Hidaka et al., Phys. Lett. 70B, 479 (1977)

    Article  ADS  Google Scholar 

  6. I.P. Auer et al., Phys. Rev. Lett. 41, 354 (1978)

    Article  ADS  Google Scholar 

  7. I.P. Auer et al., Phys. Rev. Lett. 41, 1436 (1978)

    Article  ADS  Google Scholar 

  8. I.P. Auer et al., Phys. Rev. Lett. 48, 1150 (1982)

    Article  ADS  Google Scholar 

  9. N. Hoshizaki, Prog. Theor. Phys. 60, 1796 (1978)

    Article  ADS  Google Scholar 

  10. N. Hoshizaki, ibid. 61, 129 (1979)

    Google Scholar 

  11. N. Hoshizaki, ibid. 89, 251 (1993)

    Google Scholar 

  12. N. Hoshizaki, ibid. 89, 569 (1993)

    Google Scholar 

  13. R. Bhandari, R.A. Arndt, L.D. Roper, B.J. VerWest, Phys. Rev. Lett. 46, 1111 (1981)

    Article  ADS  Google Scholar 

  14. R.A. Arndt, L.D. Roper, R.L. Workman, M.W. McNaughton, Phys. Rev. D 45, 3995 (1992)

    Article  ADS  Google Scholar 

  15. A.V. Kravtsov, M.G. Ryskin, I.I. Strakovsky, J. Phys. G 9, L187 (1983)

    Article  ADS  Google Scholar 

  16. I.I. Strakovsky, A.V. Kravtsov, M.G. Ryskin, Sov. J. Nucl. Phys. 40, 273 (1984)

    Google Scholar 

  17. I.I. Strakovsky, Fiz. Elem. Chast. Atom. Yadra 22, 615 (1991)

    Google Scholar 

  18. I.I. Strakovsky, AIP Conf. Proc. 221, 218 (1991)

    Article  ADS  Google Scholar 

  19. M.P. Locher, M.E. Sainio, A. Scare, in Advances in Nuclear Physics V. 17, edt. by J.W. Negele and E. Vogt (Plenum Press, N.-Y.-L., 1986), pp. 47–142

  20. J.A. Niskanen, Phys. Rev. C 95, 054002 (2017)

    Article  ADS  Google Scholar 

  21. P. Adlarson et al., Phys. Rev. Lett. 106, 242302 (2011)

    Article  ADS  Google Scholar 

  22. P. Adlarson et al., Phys. Lett. B721, 229 (2013)

    Article  ADS  Google Scholar 

  23. P. Adlarson et al., Phys. Rev. Lett. 112, 202301 (2014)

    Article  ADS  Google Scholar 

  24. J.L. Ping, H.X. Huang, H.R. Pang, Fan Wang, C.W. Wong, Phys. Rev. C 79, 024001 (2009)

    Article  ADS  Google Scholar 

  25. V.I. Komarov et al., Phys. Rev. C 93, 065206 (2016)

    Article  ADS  Google Scholar 

  26. V.I. Kukulin, in Proceedings of the XXXIII Winter School PIYaF, (Gatchina, 1999), p. 207

  27. V.I. Kukulin, I.T. Obukhovsky, V.N. Pomerantsev, A. Faessler, J. Phys. G 27, 1851 (2001)

    Article  ADS  Google Scholar 

  28. V.I. Kukulin, I.T. Obukhovsky, V.N. Pomerantsev, A. Faessler, Int. J. Mod. Phys. E 11, 1 (2002)

    Article  ADS  Google Scholar 

  29. V.I. Kukulin, V.N. Pomerantsev, M. Kaskulov, A. Faessler, J. Phys. G 30, 287 (2004)

    Article  ADS  Google Scholar 

  30. V.I. Kukulin, V.N. Pomerantsev, A. Faessler, J. Phys. G 30, 309 (2004)

    Article  ADS  Google Scholar 

  31. V.I. Kukulin et al., Ann. Phys. 325, 173 (2010)

    Article  Google Scholar 

  32. Y.A. Kuperin, K.A. Makarov, S.P. Merkuriev et al. in Properties of Few-Body and Quark-Hadron systems, ed. by V.V. Vanagas (Vilnius, 1986) Vol. 2, p. 28

  33. Y.A. Kuperin, K.A. Makarov, S.P. Merkuriev et al., Teor. Mat. Fiz. 75, 431 (1988)

    Article  Google Scholar 

  34. Y.A. Kuperin, K.A. Makarov, S.P. Merkuriev et al., Teor. Mat. Fiz. 76, 834 (1988)

    Article  Google Scholar 

  35. Y.A. Kuperin, K.A. Makarov, S.P. Merkuriev et al., J. Math. Phys. 31, 1681 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. Y.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, Yad. Fiz. 48, 358 (1988)

    Google Scholar 

  37. Y.A. Simonov, Yad. Fiz. 36, 722 (1982)

    Google Scholar 

  38. Y.A. Simonov, Yad. Fiz. 38, 1542 (1983)

    Google Scholar 

  39. Y.A. Simonov, Phys. Lett. B 107, 1 (1981)

    Article  ADS  Google Scholar 

  40. Y.A. Simonov, Nucl. Phys. A 416, 109c (1984)

    Article  ADS  Google Scholar 

  41. Y.S. Kalashnikova, I.M. Narodetskii, Yad. Fiz. 46, 1389 (1987)

    Google Scholar 

  42. Y.S. Kalashnikova, I.M. Narodetskii, Few-Body Syst. 4, 115 (1988)

    Article  ADS  Google Scholar 

  43. Y.A. Kuperin, S.B. Levin, Teor. Mat. Fiz. 118, 74 (1999)

    Article  Google Scholar 

  44. V.I. Kukulin, V.N. Pomerantsev, O.A. Rubtsova, M.N. Platonova, arXiv:1901.09682 [nucl-th]

  45. V.I. Kukulin, V.N. Pomerantsev, O.A. Rubtsova, M.N. Platonova, Phys. At. Nucl. (in press)

  46. D.A. Sailaubek, O.A. Rubtsova, V.I. Kukulin, Eur. Phys. J. A 54, 126 (2018)

    Article  ADS  Google Scholar 

  47. E.W. Schmid, H. Ziegelmann, The Quantum Mechanical Three-Body Problem (Pergamon Press, Oxford, 1974)

    Google Scholar 

  48. M.N. Platonova, V.I. Kukulin, Nucl. Phys. A 946, 117 (2016)

    Article  ADS  Google Scholar 

  49. M.N. Platonova, V.I. Kukulin, Phys. Rev. D 94, 054039 (2016)

    Article  ADS  Google Scholar 

  50. M.G. Meshcheriakov, B.S. Neganov, Dokl. Akad. Nauk SSSR 100, 677 (1955)

    Google Scholar 

  51. B.S. Neganov, L.B. Parfenov, Sov. Phys. JETP 7, 528 (1958)

    Google Scholar 

  52. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 76, 025209 (2007); http://gwdac.phys.gwu.edu

Download references

Acknowledgements

Authors thank Prof. S.A. Moszkowski for useful comments and suggestions. Also, we are grateful to Dr. M.N. Platonova, the results presented in Sect. 4 have been obtained in collaboration with her. The work has been partially supported by the RFBR Grants Nos. 19-02-00011 and 19-02-00014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rubtsova.

Additional information

This paper is dedicated to the memory of the brilliant Russian theorist Ludwig Faddeev who believed that an accurate treatment of few-body dynamics in few-nucleon systems should shed light on a proper form of the NN interaction

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial Issue”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomerantsev, V.N., Kukulin, V.I. & Rubtsova, O.A. Model with Coupled Internal and External Channels for 2N and 3N Systems. Few-Body Syst 60, 48 (2019). https://doi.org/10.1007/s00601-019-1516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1516-x

Navigation