Skip to main content
Log in

A new type of fuzzy systems using pyramid membership functions (PMFs) and approximation properties

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper focuses on improving the precision and simplifying the structure of fuzzy systems. A new type of fuzzy systems that using a proposed pyramid membership function (PMF) is constructed. The original compound of fuzzy rule antecedents is replaced by PMF. Specifically, the commonly used one-dimensional triangular membership functions are generalized to three kinds of two-dimensional PMFs. Cone fuzzy systems (CFSs) with the proposed rectangular pyramid, circular cone and triangular mesh pyramid membership functions are, respectively, given. Approximation properties of CFS, including universal approximation property and approximation accuracy, are proved theoretically. It is shown that, rectangular pyramid fuzzy system and triangular mesh pyramid fuzzy system are capable of achieving first-order and second-order accuracy, respectively. Two experimental examples are presented to demonstrate the effectiveness of CFS. Both theoretical and numerical results illustrate that CFS is capable of obtaining good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akram M, Shahzad S, Butt A, Khaliq A (2013) Intuitionistic fuzzy logic control for heater fans. Math Comput Sci 7(3):367–378

    Article  MATH  Google Scholar 

  • Akram M, Habib S, Javed I (2014) Intuitionistic fuzzy logic control for washing machines. Indian J Sci Technol 7(5):654–661

    Google Scholar 

  • Atanassov KT, Rangasamy P (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MATH  Google Scholar 

  • Castillo O, Alanis A, Garcia M, Arias H (2007) An intuitionistic fuzzy system for time series analysis in plant monitoring and diagnosis. Appl Soft Comput J 7(4):1227–1233

    Article  Google Scholar 

  • Celikyilmaz A, Burhan Turksen I (2008) Enhanced fuzzy system models with improved fuzzy clustering algorithm. IEEE Trans Fuzzy Syst 16(3):779–794

    Article  Google Scholar 

  • Chen CH, ChenWH (2016) United-based imperialist competitive algorithm for compensatory neural fuzzy systems [J]. IEEE Trans Syst Man Cybern Syst 46(9):1180–1189

    Article  Google Scholar 

  • Chen W, Saif M (2005) A novel fuzzy system with dynamic rule base. IEEE Trans Fuzzy Syst 13(5):569–582

    Article  Google Scholar 

  • Chen B, Lin C, Liu X, Liu K (2015) Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Trans Syst Man Cybern Syst 46(1):1–1

    Google Scholar 

  • El-Zonkoly AM, Khalil AA, Ahmied NM (2009) Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization. Expert Syst Appl 36(2):2097–2106

    Article  Google Scholar 

  • Frayman Y, Wang L (2002) A dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input–multi-output nonlinear processes. Soft Comput 6(3–4):244–253

    Article  MATH  Google Scholar 

  • Frayman Y,Wang L (1998) Data mining using dynamically constructed recurrent fuzzy neural networks. In: Pacific-Asia conference on research and development in knowledge discovery and data mining. Springer-Verlag, pp 122–131

  • Hájek P, Olej V (2012) Adaptive intuitionistic fuzzy inference systems of Takagi–Sugeno type for regression problems. Springer, Berlin

    Book  Google Scholar 

  • Hajek P, Olej V (2014) Defuzzification methods in intuitionistic fuzzy inference systems of Takagi–Sugeno type: the case of corporate bankruptcy prediction. In: International conference on fuzzy systems and knowledge discovery, pp 232–236

  • Hájek P, Olej V (2015) Intuitionistic fuzzy neural network: the case of credit scoring using text information

  • Hao Y, Chenb G (1997) Necessary conditions for some typical fuzzy systems as universal approximators. Automatica 33(7):1333–1338

    Article  MathSciNet  MATH  Google Scholar 

  • Hsueh YC, Su SF, Chen MC (2014) Decomposed fuzzy systems and their application in direct adaptive fuzzy control. IEEE Trans Cybern 44(10):1772–1783

    Article  Google Scholar 

  • Intarapaiboon P (2014) An application of intuitionistic fuzzy sets in text classification. In: International conference on information science, electronics and electrical engineering, pp 604–608

  • Jiang MZ, Zhang CL, Yuan XH, Li HX et al (2016) Fuzzy inference modeling method based on T-S fuzzy System [M]. In: Fuzzy systems & operations research and management. Springer, pp 51–61

  • Jiang MZ, Yuan XH (2017) A fuzzy inference modeling method for nonlinear systems by using triangular pyramid fuzzy system [J]. J Intell Fuzzy Syst 33(2):1–10

    Article  MATH  Google Scholar 

  • Juang CF, Hsiao CM, Hsu CH (2010) Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimization. IEEE Trans Fuzzy Syst 18(1):14–26

    Article  Google Scholar 

  • Karnik NN, Mendel JM, Liang Q (2000) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  • Kumar M, Insan A, Stoll N et al (2016) Stochastic fuzzy modeling for ear imaging based child identification [J]. IEEE Trans Syst Man Cybern Syst 46(9):1265–1278

    Article  Google Scholar 

  • Li H (1998) Interpolation mechanism of fuzzy control. Sci China Technol Sci 41(3):312–320

    Article  MathSciNet  MATH  Google Scholar 

  • Li HX, Wang J, Miao Z (2002) Modelling on fuzzy control systems. Sci China Ser A 45(12):1506–1517

    MathSciNet  MATH  Google Scholar 

  • Liu P, Li H (2005) Hierarchical ts fuzzy system and its universal approximation. Inf Sci 169(3C4):279–303

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Q, Yin J, Leung VCM, Zhai JH, Cai Z, Lin J (2016) Applying a new localized generalization error model to design neural networks trained with extreme learning machine. Neural Comput Appl 27(1):59–66

    Article  Google Scholar 

  • Lu H, Pi E, Peng Q, Wang L, Zhang C (2009) A particle swarm optimization-aided fuzzy cloud classifier applied for plant numerical taxonomy based on attribute similarity. Expert Syst Appl 36(5):9388–9397

    Article  Google Scholar 

  • Luo Q, Yang W, Yi D (2008) Kernel shapes of fuzzy sets in fuzzy systems for function approximation. Inf Sci 178(3):836–857

    Article  MathSciNet  MATH  Google Scholar 

  • Ma X, Jin Y, Dong Q (2017) A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting. Appl Soft Comput 54:296–312

    Article  Google Scholar 

  • Mansoori EG, Zolghadri MJ, Katebi SD (2008) SGERD: a steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans Fuzzy Syst 16(4):1061–1071

    Article  Google Scholar 

  • Mao ZH, Li YD, Zhang XF (1997) Approximation capability of fuzzy systems using translations and dilations of one fixed function as membership functions. IEEE Trans Fuzzy Syst 5(3):468–473

    Article  Google Scholar 

  • Marquez FA, Peregrin A, Herrera F (2008) Cooperative evolutionary learning of linguistic fuzzy rules and parametric aggregation connectors for mamdani fuzzy systems. IEEE Trans Fuzzy Syst 15(6):1162–1178

    Article  Google Scholar 

  • Mitaim S, Kosko B (2001) The shape of fuzzy sets in adaptive function approximation. IEEE Trans Fuzzy Syst 9(4):637–656

    Article  Google Scholar 

  • Olej V, Hájek P (2011) Comparison of fuzzy operators for IF-inference systems of Takagi–Sugeno type in ozone prediction. Springer, Berlin

    Book  Google Scholar 

  • Ren P, Xu Z, Gou X (2016) Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl Soft Comput 42:246–259

    Article  Google Scholar 

  • Rubio JJ (2015) Adaptive least square control in discrete time of robotic arms. Soft Comput 19(12):3665–3676

    Article  Google Scholar 

  • Rubio JJ (2016) Least square neural network model of the crude oil blending process. Neural Netw 78(C):88–96

    Article  Google Scholar 

  • Wang LX (1992) Fuzzy systems are universal approximators. In: IEEE international conference on fuzzy systems, pp 1163–1170

  • Wang LX (1996) A course in fuzzy systems and control. Prentice-Hall, Inc., Upper Saddle River

  • Wang L, Frayman Y (2002) A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles. Eng Appl Artif Intell 15(6):541–550

    Article  Google Scholar 

  • Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5):807–814

    Article  Google Scholar 

  • Wang LX, Wei C (2000) Approximation accuracy of some neuro-fuzzy approaches. IEEE Trans Fuzzy Syst 8(4):470–478

    Article  Google Scholar 

  • Wi C, Wang LX (2000) A note on universal approximation by hierarchical fuzzy systems. Inf Sci 123(3–4):241–248

    Article  MathSciNet  Google Scholar 

  • Yager RR (2013) Pythagorean fuzzy subsets. In: IFSA World Congress and NAFIPS Meeting, pp 57–61

  • Ye J (2011) Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math Comput Modell 53(1C2):91–97

    Article  MathSciNet  MATH  Google Scholar 

  • Ying H (1994) Sufficient conditions on general fuzzy systems as function approximators. Automatica 30(3):521–525

    Article  MATH  Google Scholar 

  • Ying H (1998a) General siso Takagi–Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans Fuzzy Syst 6(4):582–587

    Article  Google Scholar 

  • Ying H (1998b) General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters. Inf Sci 108(1–4):91–107

    Article  MathSciNet  MATH  Google Scholar 

  • Ying H (1998c) Sufficient conditions on uniform approximation of multivariate functions by general Takagi–Sugeno fuzzy systems with linear rule consequent. IEEE Trans Syst Man Cybern Part A Syst Hum 28(4):515–520

    Article  Google Scholar 

  • Ying H, Ding Y, Li S, Shao S (1999) Comparison of necessary conditions for typical Takagi–Sugeno and mamdani fuzzy systems as universal approximators. IEEE Trans Syst Man Cybern Part A Syst Hum 29(5):508–514

    Article  Google Scholar 

  • Yuan XH, Hong-Xing LI, Sun KB (2011) Fuzzy systems and their approximation capability based on parameter singleton fuzzifier methods. Tien Tzu Hsueh Pao/acta Electronica Sinica 39(10):2372–2377

    Google Scholar 

  • Yuan XH, Li HX, Yang X (2013) Fuzzy system and fuzzy inference modeling method based on fuzzy transformation. Tien Tzu Hsueh Pao/acta Electronica Sinica 41(4):674–680

    Google Scholar 

  • Zeng XJ, Singh MG (1996a) Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Trans Fuzzy Syst 4(1):44–63

    Article  Google Scholar 

  • Zeng XJ, Singh MG (1996b) A relationship between membership functions and approximation accuracy in fuzzy systems. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc 26(1):176–180

    Article  Google Scholar 

  • Zeng K, Zhang NY, Xu WL (2000) A comparative study on sufficient conditions for Takagi–Sugeno fuzzy systems as universal approximators. IEEE Trans Fuzzy Syst 8(6):773–780

    Article  Google Scholar 

  • Zheng YJ, Sheng WG, Sun XM, Chen SY (2016) Airline passenger profiling based on fuzzy deep machine learning. IEEE Trans Neural Netw Learn Syst PP(99):1–13

    Article  Google Scholar 

  • Zheng YJ, Chen SY, Xue Y, Xue JY (2017) A pythagorean-type fuzzy deep denoising autoencoder for industrial accident early warning. IEEE Trans Fuzzy Syst PP(99):1–1

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, the Associate Editor, and anonymous reviewers for their constructive comments, which helped greatly improve the presentation of this paper. This work was supported by National Science Foundations of China (No. 61473327, 61773088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzuo Jiang.

Ethics declarations

Conflict of interest

All the authors declare that he/she has no conflict of interest.

Additional information

Communicated by A. Di Nola.

Appendices

Appendix A: Different types of cone fuzzy systems

(1) Rectangular pyramid fuzzy system

From (23) and (9)–(12), the expressions of RPFS can be represented by:

in the domain \(D_1\),

$$\begin{aligned} S(x,y)&= \frac{{({x_{i + 1}} - x)({y_{j + 1}}- {y_j})}}{{(2y +{y_{j + 1}} - 3{y_j})({x_{i + 1}} - {x_i})}}{z_{ij}} \\&\quad +\, \frac{{y - {y_j}}}{{2y +{y_{j + 1}}- 3{y_j}}}{z_{i,j + 1}}\\&\quad +\frac{{y- {y_j}}}{{2y +{y_{j + 1}}- 3{y_j}}}{z_{i + 1,j + 1}} \\ {}&\quad +\frac{{(x - {x_i})({y_{j + 1}}- {y_j})}}{{(2y + {y_{j + 1}} - 3{y_j})({x_{i + 1}} - {x_i})}}{z_{i + 1,j}}; \end{aligned}$$

in the domain \(D_2\),

$$\begin{aligned} S(x,y)&= \frac{{({x_{i + 1}}- {x_i})({y_{j + 1}}- y)}}{{(2x +{x_{i + 1}}- 3{x_i})({y_{j + 1}} - {y_j})}}{z_{ij}} \\&\quad + \,\frac{{x - {x_i}}}{{2x + {x_{i+1}} - 3{x_i}}}{z_{i+1,j + 1}}\\&\quad +\, \frac{{x - {x_i}}}{{2x + {x_{i + 1}} - 3{x_i}}}{z_{i + 1,j}} \\&\quad + \,\frac{{({x_{i + 1}} - {x_i})(y - {y_j})}}{{(2x + {x_{i + 1}} - 3{x_i})({y_{j + 1}} - {y_j})}}{z_{i,j + 1}}; \end{aligned}$$

in the domain \(D_3\),

$$\begin{aligned} S(x,y)&= \frac{{({y_{j + 1}} - {y_j})({x_{i + 1}} - x)}}{{( - 2y + 3{y_{j + 1}} - {y_j})({x_{i + 1}}- {x_i})}}{z_{i,j + 1}}\\&\quad +\, \frac{{{y_{j + 1}}- y}}{{ - 2y + 3{y_{j + 1}} - {y_j}}}{z_{ij}} \\&\quad +\,\frac{{{y_{j + 1}} - y}}{{ - 2y+3{y_{j + 1}}- {y_j}}}{z_{i + 1,j}}\\&\quad +\, \frac{{({y_{j + 1}} - {y_j})(x - {x_i})}}{{( - 2y +3{y_{j + 1}}- {y_j})({x_{i + 1}}- {x_i})}}{z_{i + 1,j + 1}}; \end{aligned}$$

in the domain \(D_4\),

$$\begin{aligned} S(x,y)&= \frac{{({x_{i + 1}}- {x_i})({y_{j + 1}} - y)}}{{( - 2x + 3{x_{i + 1}}- {x_i})({y_{j + 1}} - {y_j})}}{z_{i + 1,j}} \\&\quad +\, \frac{{{x_{i + 1}}- x}}{{ - 2x+ 3{x_{i + 1}} - {x_i}}}{z_{ij}} \\&\quad +\, \frac{{{x_{i + 1}}- x}}{{ - 2x + 3{x_{i + 1}}- {x_i}}}{z_{i,j + 1}}\\&\quad +\, \frac{{({x_{i + 1}}- {x_i})(y - {y_j})}}{{( - 2x +{x_{i + 1}}- {x_i})({y_{j + 1}} - {y_j})}}{z_{i + 1,j + 1}}. \end{aligned}$$

(2) Circular cone fuzzy system

From (23) and (13)–(16), the general expressions of CCFS can be deduced:

In the domain \(U_1\): \(S(x,y)=\frac{m_1}{n_1}\), where

$$\begin{aligned} m_1&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) {z_{ij}}\nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) {z_{i + 1,j}} \nonumber \\&\quad +\,\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i + 1,j + 1}}, \end{aligned}$$
(28)
$$\begin{aligned} n_1&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) . \end{aligned}$$
(29)

In the domain \(U_2\): \(S(x,y)=\frac{m_2}{n_2}\), where

$$\begin{aligned} m_2&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}}\right) {z_{ij}} \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i,j + 1}} \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) {z_{i + 1,j}}, \end{aligned}$$
(30)
$$\begin{aligned} n_2&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) . \end{aligned}$$
(31)

In the domain \(U_3\): \(S(x,y)=\frac{m_3}{n_3}\), where

$$\begin{aligned} m_3&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) {z_{ij}} \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i,j + 1}}\nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i + 1,j + 1}}, \end{aligned}$$
(32)
$$\begin{aligned} n_3&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) . \end{aligned}$$
(33)

In the domain \(U_4\): \(S(x,y)=\frac{m_4}{n_4}\), where

$$\begin{aligned} m_4&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i,j + 1}} \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) {z_{i + 1,j}}\nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i + 1,j + 1}}, \end{aligned}$$
(34)
$$\begin{aligned} n_4&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) . \end{aligned}$$
(35)

In the domain \(U_5\): \(S(x,y)=\frac{m_5}{n_5}\), where

$$\begin{aligned} m_5&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) {z_{ij}}\nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i,j + 1}}\nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) {z_{i + 1,j}} \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i + 1,j + 1}}, \end{aligned}$$
(36)
$$\begin{aligned} n_5&=\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) . \end{aligned}$$
(37)

In the domain \(V_1\):

$$\begin{aligned} S(x,y)&= \left( \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) {z_{ij}} \right. \nonumber \\&\quad \left. +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) {z_{i + 1,j}}\right) \!\Big /\nonumber \\&\quad \left( \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) \right. \nonumber \\&\quad \left. +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_j})}^2}} \right) \right) . \end{aligned}$$
(38)

In the domain \(V_2\):

$$\begin{aligned} S(x,y)&= \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) {z_{ij}}\nonumber \\&\quad +\,\left. \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i,j + 1}}\right) \!\Big /\nonumber \\&\quad \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) \nonumber \\&\quad \left. + \,\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \right) . \end{aligned}$$
(39)

In the domain \(V_3\):

$$\begin{aligned} S(x,y)&=\left( \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i,j + 1}}\right. \nonumber \\&\quad \left. +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i + 1,j + 1}}\right) \!\Big /\nonumber \\&\quad \left( \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \right. \nonumber \\&\quad \left. +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \right) . \end{aligned}$$
(40)

In the domain \(V_4\):

$$\begin{aligned} S(x,y)&= \left( \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}} \right) {z_{ij}}\right. \nonumber \\&\quad \left. +\, \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) {z_{i + 1,j + 1}}\right) \!\Big /\nonumber \\&\quad \left( \left( 1 - \frac{1}{h}\sqrt{{{(x - {x_i})}^2} + {{(y - {y_j})}^2}}\right) \right. \nonumber \\&\quad \left. + \,\left( 1 - \frac{1}{h}\sqrt{{{(x - {x_{i + 1}})}^2} + {{(y - {y_{j + 1}})}^2}} \right) \right) . \end{aligned}$$
(41)

(3) Triangular mesh pyramid fuzzy system

From (24) and (17)–(22), the expressions of the output of a TPFS model are derived as follows:

in the domain \(E_1\):

$$\begin{aligned} \begin{aligned}&S(x,y) = \left( \frac{{{x_{i + 1}}{y_{j + 1}} - {x_i}{y_{j + 1}}}}{{{m_1}}} - \frac{{{x_{i + 1}} - {x_i}}}{{{m_1}}}y\right) {z_{ij}}\\&\quad +\, \left( \frac{{{x_i}{y_{j + 1}} - {x_{i + 1}}{y_j}}}{{{m_1}}} - \frac{{{y_{j + 1}} - {y_j}}}{{{m_1}}}x - \frac{{{x_i} - {x_{i + 1}}}}{{{m_1}}}y\right) {z_{i,j + 1}}\\&\quad +\, \left( \frac{{{x_i}{y_j} - {x_i}{y_{j + 1}}}}{{{m_1}}} - \frac{{{y_j} - {y_{j + 1}}}}{{{m_1}}}x\right) {z_{i + 1,j + 1}}; \end{aligned} \end{aligned}$$
(42)

in the domain \(E_2\):

$$\begin{aligned} \begin{aligned} S(x,y)&= \left( \frac{{{x_{i + 1}}{y_j} - {x_{i + 1}}{y_{j + 1}}}}{{{m_2}}} - \frac{{{y_j} - {y_{j + 1}}}}{{{m_2}}}x\right) {z_{ij}}\\&\quad +\,\left( \frac{{{x_i}{y_{j + 1}} - {x_{i + 1}}{y_j}}}{{{m_2}}} - \frac{{{y_{j + 1}} - {y_j}}}{{{m_2}}}x - \frac{{{x_i} - {x_{i + 1}}}}{{{m_2}}}y\right) {z_{i + 1,j}}\\&\quad +\, \left( \frac{{{x_{i + 1}}{y_j} - {x_i}{y_j}}}{{{m_2}}} - \frac{{{x_{i + 1}} - {x_i}}}{{{m_2}}}y\right) {z_{i + 1,j + 1}}. \end{aligned} \end{aligned}$$
(43)

Appendix B: Proofs of theorems

Proof of Theorem 3

Without losing generality, the proof is discussed on one partition of the domain D. We can now prove the theorem with the help of interpolation property of CFS.

$$\begin{aligned}&\left| S\left( x,y \right) -f\left( x,y \right) \right| \\&\quad =\left| S\left( x,y \right) -S\left( {{x}_{i}},{{y}_{j}} \right) +f\left( {{x}_{i}},{{y}_{j}} \right) -f\left( x,y \right) \right| \\&\quad \le \left| S\left( x,y \right) -S\left( {{x}_{i}},{{y}_{j}} \right) \right| +\left| f\left( {{x}_{i}},{{y}_{j}} \right) -f\left( x,y \right) \right| . \end{aligned}$$

Using Taylor expansion (Rubio 2016; Liu et al. 2016; Rubio 2015) with Lagrange remainder, there exist \(({{\xi }_{1}},{{\eta }_{1}})\) and \(({{\xi }_{2}},{{\eta }_{2}})\) which both belong to \(\left( {{x}_{i}},{{x}_{i+1}} \right) \times \left( {{y}_{j}},{{y}_{j+1}} \right) \) such that

$$\begin{aligned}&\left| S\left( x,y \right) -f\left( x,y \right) \right| \\&\quad \le \left| \frac{\partial S}{\partial x}\left| _{({{\xi }_{1}},{{\eta }_{1}})} \right. \left( x-{{x}_{i}} \right) +\frac{\partial S}{\partial y}\left| _{({{\xi }_{1}},{{\eta }_{1}})} \right. \left( y-{{y}_{j}} \right) \right| \\&\quad \quad +\,\left| \frac{\partial f}{\partial x}\left| _{({{\xi }_{2}},{{\eta }_{2}})} \right. \left( x-{{x}_{i}} \right) +\frac{\partial f}{\partial y}\left| _{({{\xi }_{2}},{{\eta }_{2}})} \right. (y-{{y}_{j}}) \right| \\&\quad \le \left( \left| \frac{\partial S}{\partial x}\left| _{({{\xi }_{1}},{{\eta }_{1}})} \right. \right| +\left| \frac{\partial S}{\partial y}\left| _{({{\xi }_{1}},{{\eta }_{1}})} \right. \right| +\left| \frac{\partial f}{\partial x}\left| _{({{\xi }_{2}},{{\eta }_{2}})} \right. \right| \right. \\&\quad \quad \left. +\,\left| \frac{\partial f}{\partial y}\left| _{({{\xi }_{2}},{{\eta }_{2}})} \right. \right| \right) h, \end{aligned}$$

where \(h=\max \{ |x-{{x}_{i}}|,|y-{{y}_{j}}| \}\).

As \(\left( |\frac{\partial S}{\partial x}| _{({\xi }_{1},{\eta }_{1})}|+| \frac{\partial S}{\partial y}| _{({\xi }_{1},{\eta }_{1})}|+| \frac{\partial f}{\partial x}| _{({\xi }_{2},{\eta }_{2})} |+| \frac{\partial f}{\partial y}| _{({\xi }_{2},{\eta }_{2})} | \right) \) is a constant, when h is sufficiently small, for any \(\varepsilon >0\), it is evident that the following inequality can be obtained:

$$\begin{aligned} \left| S\left( x,y \right) -f\left( x,y \right) \right| <\varepsilon \quad \forall \left( x,y \right) \in D. \end{aligned}$$

Then

$$\begin{aligned} \left\| S-f \right\| =\underset{\left( x,y \right) \in D}{\mathop {\sup }}\,\left| S\left( x,y \right) -f\left( x,y \right) \right| <\varepsilon . \end{aligned}$$

The proof is complete.\(\square \)

Proof of Theorem 4

The proofs of this theorem in the domains \(D_1\)\(D_4\) are similar, so we only discuss the case of domain \(D_1\).

To utilize the property of triangular membership functions, we denote \(A_i(x)\), \(A_{i+1}(x)\), \(B_j(y)\) and \(B_{j+1}(y)\) as triangular membership functions with the peak points \(x_i\), \(x_{i+1}\), \(y_j\) and \(y_{j+1}\). For \(x\in [x_i,x_{i+1}]\) and \(y\in [y_j,y_{j+1}]\), we have

$$\begin{aligned} {A_i}(x)&= \frac{{{x_{i + 1}} - x}}{{{x_{i + 1}} - {x_i}}},\quad {A_{i + 1}}(x) = \frac{{x - {x_i}}}{{{x_{i + 1}} - {x_i}}},\\ {B_j}(y)&= \frac{{{y_{j + 1}} - y}}{{{y_{j + 1}} - {y_j}}}, \quad {B_{j + 1}}(y) = \frac{{y - {y_j}}}{{{y_{j + 1}} - {y_j}}}. \end{aligned}$$

For \(\forall (x,y) \in [{x_i},{x_{i + 1}}] \times [{y_j},{y_{j + 1}}]\), the expression of RPFS can be rewritten as follows:

$$\begin{aligned} S(x,y)&= \frac{{{A_i}(x)}}{{1 + 2{B_{j + 1}}(y)}}{z_{ij}} + \frac{{{B_{j + 1}}(y)}}{{1 + 2{B_{j + 1}}(y)}}{z_{i,j + 1}}\\&\quad +\, \frac{{{B_{j + 1}}(y)}}{{1 + 2{B_{j + 1}}(y)}}{z_{i + 1,j + 1}} + \frac{{{A_{i + 1}}(x)}}{{1 + 2{B_{j + 1}}(y)}}{z_{i + 1,j}}. \end{aligned}$$

Let \(\bar{S}(x,y)\) be defined by (3). We first estimate the following absolute difference. Note that the triangular membership functions have the properties, i.e., \({A_i}(x) + {A_{i + 1}}(x) = 1\), \({B_j}(y) + {B_{j + 1}}(y) = 1\), \(A_i(x)\le 1\), \(A_{i+1}(x)\le 1\), \(B_j(y)\le 1\) and \(B_{j+1}(y)\le 1\). It follows that

$$\begin{aligned}&\left| {S(x,y) - \bar{S}(x,y)} \right| \nonumber \\&\quad = \left| {\frac{{{A_i}(x){B_{j + 1}}(y)({B_{j + 1}}(y) - {B_j}(y))}}{{1 + 2{B_{j + 1}}(y)}}{z_{ij}}} \right. \nonumber \\&\quad \quad +\,\frac{{{B_{j + 1}}(y)({A_{i + 1}}(x) - 2{A_i}(x){B_{j + 1}}(y))}}{{1 + 2{B_{j + 1}}(y)}}{z_{i,j + 1}} \nonumber \\&\quad \quad +\, \frac{{{B_{j + 1}}(y)({A_i}(x) - 2{A_{i + 1}}(x){B_{j + 1}}(y))}}{{1 + 2{B_{j + 1}}(y)}}{z_{i + 1,j + 1}}\nonumber \\&\quad \quad \left. +\, \frac{{{A_{i + 1}}(x){B_{j + 1}}(y)({B_{j + 1}}(y) - {B_j}(y))}}{{1 + 2{B_{j + 1}}(y)}}{z_{i + 1,j}}\right| \nonumber \\&\quad = \left| {\frac{{{A_i}(x){B_{j + 1}}(y)({B_{j + 1}}(y) - {B_j}(y))}}{{1 + 2{B_{j + 1}}(y)}}({z_{ij}} - {z_{i + 1,j}})} \right. \nonumber \\&\quad \quad +\,\frac{{{B_{j + 1}}(y)({A_i}(x) - 2{A_{i + 1}}(x){B_{j + 1}}(y))}}{{1 + 2{B_{j + 1}}(y)}}({z_{i + 1,j + 1}} - {z_{i,j + 1}}) \nonumber \\&\quad \quad \left. { +\, \frac{{{B_{j + 1}}(y)({B_{j + 1}}(y) - {B_j}(y))}}{{1 + 2{B_{j + 1}}(y)}}({z_{i + 1,j}} - {z_{i,j + 1}})} \right| \nonumber \\&\quad \le \frac{1}{3}\left| {{z_{ij}} - {z_{i + 1,j}}} \right| + \frac{1}{3}\left| {{z_{i + 1,j + 1}} - {z_{i,j + 1}}} \right| \nonumber \\&\quad \quad +\, \frac{1}{3}\left| {{z_{i + 1,j}} - {z_{i,j + 1}}} \right| \nonumber \\&\quad \le \frac{1}{3}\left| {{z_{ij}} - {z_{i + 1,j}}} \right| + \frac{1}{3}\left| {{z_{i + 1,j + 1}} - {z_{i,j + 1}}} \right| \nonumber \\&\quad \quad +\, \frac{1}{3}\left| {{z_{i + 1,j}} - {z_{ij}}} \right| + \frac{1}{3}\left| {{z_{ij}} - {z_{i,j + 1}}} \right| \nonumber \\&\quad \le {\left\| {\frac{{\partial f}}{{\partial x}}} \right\| _\infty }{h_1} + \frac{1}{3}{\left\| {\frac{{\partial f}}{{\partial y}}} \right\| _\infty }{h_2}. \end{aligned}$$
(44)

According to the approximation property of \(\bar{S}(x,y)\) given by Theorem 2, the difference between \(\bar{S}(x,y)\) and f(xy) can be expressed as

$$\begin{aligned}&\left| {S(x,y) - f(x,y)} \right| \\&\quad \le \left| {S(x,y) - \bar{S}(x,y)} \right| + \left| {\bar{S}(x,y) - f(x,y)} \right| \\&\quad \le \frac{1}{8}\left( {\left\| {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right\| _\infty }{h_1}^2 +{\left\| {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right\| _\infty }{h_2}^2\right) \\&\quad \quad +\, {\left\| {\frac{{\partial f}}{{\partial x}}} \right\| _\infty }{h_1}+ \frac{1}{3}{\left\| {\frac{{\partial f}}{{\partial y}}} \right\| _\infty }{h_2}, \end{aligned}$$

which ends the proof.\(\square \)

Proof of Theorem 5

Take the TPFS in \(E_2\) as an example and define the error as

$$\begin{aligned} \varepsilon (x,y) = S(x,y) - f(x,y). \end{aligned}$$

Using first-order Taylor series expansion around an arbitrary point (zw), the error expands to

$$\begin{aligned} \varepsilon (x,y)&= \varepsilon (z,w) + \frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. (x - z) \\&\quad +\, \frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. (y - w)+ r(x,y,z,w), \end{aligned}$$

where r(xyzw) is the remainder term defined by

$$\begin{aligned}&r(x,y,z,w) = \frac{{{\partial ^2}\varepsilon }}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. (x - z)(y - w)\nonumber \\&\quad +\, \frac{1}{2}\frac{{{\partial ^2}\varepsilon }}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. {(x - z)^2} + \frac{1}{2}\frac{{{\partial ^2}\varepsilon }}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. {(y - w)^2}. \end{aligned}$$
(45)

Note that S(xy) is a linear function of two variables. It follows that

$$\begin{aligned}&\frac{{{\partial ^2}\varepsilon }}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. = \frac{{{\partial ^2}f}}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. ,\frac{{{\partial ^2}\varepsilon }}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. = \frac{{{\partial ^2}f}}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. ,\nonumber \\&\frac{{{\partial ^2}\varepsilon }}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. = \frac{{{\partial ^2}f}}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. . \end{aligned}$$
(46)

Substituting Eq. (46) into Eq. (45) yields

$$\begin{aligned}&r(x,y,z,w) = \frac{{{\partial ^2}f}}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. (x - z)(y - w)\\&\quad +\, \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. {(x - z)^2}+ \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. {(y - w)^2}. \end{aligned}$$

The interpolation property of a TPFS implies that \(\varepsilon (x,y)\) is equal to zero at the points \((x_i, y_j)\), \((x_{i+1}, y_j)\) and \((x_{i+1}, y_{j+1})\). It then follows that

$$\begin{aligned}&\varepsilon (z,w) + \frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ({x_i} - z) + \frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. ({y_j} - w) \nonumber \\&\quad +\, \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. {({x_i} - z)^2}+ \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. {({y_j} - w)^2} \nonumber \\&\quad +\, \frac{{{\partial ^2}f}}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. ({x_i} - z)({y_j} - w) = 0, \end{aligned}$$
(47)
$$\begin{aligned}&\varepsilon (z,w) + \frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ({x_{i + 1}} - z)+\frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. ({y_j} - w) \nonumber \\&\quad +\,\frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. {({x_{i + 1}} - z)^2}+ \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. {({y_j} - w)^2} \nonumber \\&\quad +\,\frac{{{\partial ^2}f}}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. ({x_{i + 1}} - z)({y_j} - w) = 0, \end{aligned}$$
(48)
$$\begin{aligned}&\varepsilon (z,w) +\frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ({x_{i + 1}} - z) + \frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. ({y_{j + 1}} - w) \nonumber \\&\quad +\, \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left| {_{(\xi ,\eta )}} \right. {({x_{i + 1}} - z)^2} + \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {y^2}}}\left| {_{(\xi ,\eta )}} \right. {({y_{j + 1}} - w)^2} \nonumber \\&\quad +\, \frac{{{\partial ^2}f}}{{\partial x\partial y}}\left| {_{(\xi ,\eta )}} \right. ({x_{i + 1}} - z)({y_{j + 1}}- w) = 0. \end{aligned}$$
(49)

For simplicity, the remainder terms of Eqs. (47)–(49) are denoted by \(r_1\), \(r_2\), \(r_3\) in the following derivations. Then Eqs. (47)–(49) can be rewritten as:

$$\begin{aligned}&\varepsilon (z,w) + \frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ({x_i} - z) +\frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. ({y_j} - w) \nonumber \\&\quad +\, {r_1}= 0, \end{aligned}$$
(50)
$$\begin{aligned}&\varepsilon (z,w) + \frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ({x_{i + 1}} - z) + \frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. ({y_j} - w) \nonumber \\&\quad +\, {r_2} = 0, \end{aligned}$$
(51)
$$\begin{aligned}&\varepsilon (z,w) + \frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ({x_{i + 1}} - z) + \frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. ({y_{j + 1}} - w) \nonumber \\&\quad +\, {r_3} = 0. \end{aligned}$$
(52)

Equations (5051)–(52) can be regarded as a linear system with respect to \(\varepsilon (z,w)\), \(\frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. \), and \(\frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. \). Define the column vectors \({\varvec{\varepsilon }} = {(\varepsilon (z,w),\frac{{\partial \varepsilon }}{{\partial x}}\left| {_{(z,w)}} \right. ,\frac{{\partial \varepsilon }}{{\partial y}}\left| {_{(z,w)}} \right. )^T}\) and \({\mathbf{r}} = {( - {r_1}, - {r_2}, - {r_3})^T}\), and the coefficient matrix

$$\begin{aligned} {\mathbf{A}} = \left[ \begin{array}{lll} 1&{}\quad {x_i} - z&{}\quad {y_j} - w \\ 1&{}\quad {x_{i + 1}} - z&{}\quad {y_j} - w \\ 1&{}\quad {x_{i + 1}} - z&{}\quad {y_{j + 1}} - w \end{array} \right] . \end{aligned}$$

The linear system Eqs. (5051)–(52) can be rewritten in a compact form by

$$\begin{aligned} {\mathbf{A}}\varepsilon = {\mathbf{r}}. \end{aligned}$$
(53)

Define d and \(d_1\) as follows:

$$\begin{aligned} d= & {} \left| {\mathbf{A}} \right| = {h_1}{h_2}, \\ {d_1}= & {} \left| \begin{array}{lll} - \,{r_1}&{}\quad {x_i} - z&{}\quad {y_j} - w\\ -\, {r_2}&{}\quad {x_{i + 1}} - z&{}\quad {y_j} - w\\ - \,{r_3}&{}\quad {x_{i + 1}} - z&{}\quad {y_{j + 1}} - w \\ \end{array} \right| \\= & {} - {r_1}[({x_{i + 1}} - z)({y_{j + 1}} - w) - ({x_{i + 1}} - z)({y_j} - w)] \\&+\, {r_2}[({x_i} - z)({y_{j + 1}} - w) - ({x_{i + 1}} - z)({y_j} - w)] \\&-\, {r_3}[({x_i} - z)({y_j} - w) - ({x_{i + 1}} - z)({y_j} - w)]. \end{aligned}$$

According to Cramer’s rule, it holds that \(\varepsilon (z,w) = {d_1}/d\). Furthermore, it can be observed that

$$\begin{aligned} \left| {{r_1}} \right| ,\left| {{r_2}} \right| ,\left| {{r_3}} \right|&\le \frac{1}{2}{\left\| {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right\| _\infty }{h_1}^2 +{\left\| {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right\| _\infty }{h_1}{h_2}\\&\quad +\, \frac{1}{2}{\left\| {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right\| _\infty }{h_2}^2, \end{aligned}$$

and

$$\begin{aligned} \left| {{d_1}} \right|\le & {} \left| { - {r_1}[({x_{i + 1}} - z)({y_{j + 1}} - w) - ({x_{i + 1}} - z)({y_j} - w)]} \right| \\&+\, \left| {{r_2}[({x_i} - z)({y_{j + 1}} - w) - ({x_{i + 1}} - z)({y_j} - w)]} \right| \\&+\, \left| { - {r_3}[({x_i} - z)({y_j} - w) - ({x_{i + 1}} - z)({y_j} - w)]} \right| \\\le & {} 2{h_1}{h_2}(\left| {{r_1}} \right| + \left| {{r_2}} \right| + \left| {{r_3}} \right| ). \end{aligned}$$

It then follows that

$$\begin{aligned} \left| {\varepsilon (z,w)} \right| \le 3{\left\| {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right\| _\infty }{h_1}^2 +6{\left\| {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right\| _\infty }{h_1}{h_2} + 3{\left\| {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right\| _\infty }{h_2}^2. \end{aligned}$$

Since the point (zw) is arbitrarily selected, it can be finally claimed that

$$\begin{aligned} {\left\| {S - f} \right\| _\infty }&\le 3{\left\| {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right\| _\infty }{h_1}^2 + 6{\left\| {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right\| _\infty }{h_1}{h_2} \\&\quad + \,3{\left\| {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right\| _\infty }{h_2}^2, \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Yuan, X. A new type of fuzzy systems using pyramid membership functions (PMFs) and approximation properties. Soft Comput 22, 7103–7118 (2018). https://doi.org/10.1007/s00500-017-2984-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2984-x

Keywords

Navigation