Skip to main content
Log in

\(L^p\) solution of backward stochastic differential equations driven by a marked point process

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We obtain existence and uniqueness in \(L^p\), \(p>1\) of the solutions of a backward stochastic differential equation (BSDE for short) driven by a marked point process, on a bounded interval. We show that the solution of the BSDE can be approximated by a finite system of deterministic differential equations. As application, we address an optimal control problem for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren R, Chriss N (2001) Optimal execution of portfolio transactions. J Risk 3:5–39

    Article  Google Scholar 

  2. Ankirchner S, Jeanblanc M, Kruse T (2014) BSDEs with singular terminal condition and a control problem with constraints. SIAM J Control Optim 52(2):893913

    Article  MathSciNet  Google Scholar 

  3. Aubin J-P, Frankowska H (1990) Set-valued analysis. Systems & control: foundations & applications, vol 2. Birkhäuser

  4. Bahlali K, Eddahbi M, Essaky EH (2003) BSDE associated with Lévy processes and application to PDIE. Int J Stoch Anal 16(1):117

    MATH  Google Scholar 

  5. Bandini E (2015) Existence and uniqueness for backward stochastic differential equations driven by a random measure, possibly non quasi-left continuous. Electron Commun Probab 20

  6. Bandini E, Confortola F Optimal control of semi-Markov processes with a backward stochastic differential equations approach. Preprint. arXiv:1311.1063

  7. Barles G, Buckdahn R, Pardoux E (1997) Backward stochastic differential equations and integral-partial differential equations. Stoch Stoch Rep 60:57–83

    Article  MathSciNet  Google Scholar 

  8. Becherer D (2006) Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. Ann Appl Probab 16:2027–2054

    Article  MathSciNet  Google Scholar 

  9. Bismut J-M (1973) Conjugate convex functions in optimal stochastic control. J Math Anal Appl 44(2):384404

    Article  MathSciNet  Google Scholar 

  10. Briand P, Carmona R (2000) BSDEs with polynomial growth generators. J Appl Math Stoch Anal 13:207238

    Article  MathSciNet  Google Scholar 

  11. Briand P, Delyon B, Hu Y, Pardoux E, Stoica L (2003) Lp solutions of backward stochastic dierential equations. Stoch Process Appl 108:109129

    Article  Google Scholar 

  12. Carbone R, Ferrario B, Santacroce M (2008) Backward stochastic differential equations driven by càdlàg martingales. Theory Probab Appl 52:304–314

    Article  MathSciNet  Google Scholar 

  13. Cohen SN, Elliott RJ (2008) Solutions of backward stochastic differential equations on Markov chains. Commun Stoch Anal 2:251–262

    MathSciNet  MATH  Google Scholar 

  14. Cohen SN, Elliott RJ (2010) Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions. Ann Appl Probab 20:267–311

    Article  MathSciNet  Google Scholar 

  15. Cohen SN, Elliott RJ (2015) Stochastic calculus and applications, 2 nd ed. Probability and its Applications. Springer, Cham, 2015. xxiii+666 pp

  16. Cohen SN, Szpruch L (2012) On Markovian solution to Markov Chain BSDEs. Numer Algebra Control Optim 2:257–269

    Article  MathSciNet  Google Scholar 

  17. Confortola F, Fuhrman M (2013) Backward stochastic differential equations and optimal control of marked point processes. SIAM J Control Optim 51(5):3592–3623

    Article  MathSciNet  Google Scholar 

  18. Confortola F, Fuhrman M (2014) Backward stochastic differential equations associated to jump Markov processes and their applications. Stoch Process Their Appl 124:289–316

    Article  Google Scholar 

  19. Confortola F, Fuhrman M, Jacod J Backward stochastic differential equation driven by a marked point process: an elementary approach with an application to optimal control. Ann Appl Probab, to appear

  20. Crépey S, Matoussi A (2008) Reflected and doubly reflected BSDEs with jumps: a priori estimates and comparison. Ann Appl Probab 18:2041–2069

    Article  MathSciNet  Google Scholar 

  21. Davis MHA (1976) The representation of martingales of jump processes. SIAM J Control Optim 14(4):623–638

    Article  MathSciNet  Google Scholar 

  22. Davis MHA (1993) Markov models and optimization. Monographs on Statistics and Applied Probability, 49. Chapman & Hall

  23. Eddahbi M, Fakhouri I, Ouknine Y (2017) \(L^p\) (\(p\ge 2\))-solutions of generalized BSDEs with jumps and monotone generator in a general filtration. Mod Stoch Theory Appl 4(1):2563

    Article  Google Scholar 

  24. El Karoui N, Matoussi A, Ngoupeyou A (2016) Quadratic exponential semimartingales and application to BSDEs with jumps. arXiv preprint. arXiv:1603.06191

  25. El Karoui N, Peng S, Quenez M-C (1997) Backward stochastic differential equations in finance. Math Finance 7:1–71

    Article  MathSciNet  Google Scholar 

  26. Filippov AF (1962) On certain questions in the theory of optimal control. Vestnik Moskov Univ Ser Mat Meh Astronom 2:2542 (1959). English trans. J Soc Indust Appl Math Ser A Control 1:7684

  27. Forsyth P, Kennedy J, Tse S, Windcliff H (2012) Optimal trade execution: a mean quadratic variation approach. J Econ Dyn Control 36:19711991

    Article  MathSciNet  Google Scholar 

  28. Gatheral J, Schied A (2011) Optimal trade execution under geometric Brownian motion in the Almgren and Chriss framework. Int J Theor Appl Financ 14:353–368

    Article  MathSciNet  Google Scholar 

  29. Graewe P, Horst U (2017) Optimal trade execution with instantaneous price impact and stochastic resilience. SIAM J Control Optim 55(6):3707–3725

    Article  MathSciNet  Google Scholar 

  30. Graewe P, Horst U, Qiu J (2015) A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions. SIAM J Control Optim 53(2):690–711

    Article  MathSciNet  Google Scholar 

  31. He S, Wang J, Yan Y (1992) Semimartingale theory and stochastic calculus. Science Press, Bejiing

    MATH  Google Scholar 

  32. Li J, Wei Q (2014) Lp estimates for fully coupled FBSDEs with jumps. Stoch Process Appl 124(4):15821611

    Article  Google Scholar 

  33. Jacod J (1974) Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales. Zeit für Wahr 31:235–253

    Article  MathSciNet  Google Scholar 

  34. (1979) Calcul stochastique et problmes de martingales. Lecture Notes in Mathematics 714, Springer, Berlin (1979)

  35. Jacod J, Mémin J (1981) Weak and strong solutions of stochastic differential equations: existence and stability. In: Williams R (ed) Stochastic integrals. Springer Verlag, Lectures Notes in Math. vol 851, pp 169-212

  36. Kazi-Tani MN, Possamaï D, Zhou C (2015) Quadratic BSDEs with jumps: a fixed-point approach. Electron J Probab 20(66):128

    MathSciNet  MATH  Google Scholar 

  37. Kazi-Tani N PD, Zhou C (2015) Quadratic BSDEs with jumps: related nonlinear expectations. Stoch Dyn 1650012

  38. Kharroubi I, Lim T (2012) Progressive enlargement of filtrations and backward SDEs with jumps. Preprint

  39. Kratz P, Schneborn T (2015) Portfolio liquidation in dark pools in continuous time. Math Finance 25(3):496544

    Article  MathSciNet  Google Scholar 

  40. Kruse T, Popier A (2016) BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 88(4):491539

    Article  MathSciNet  Google Scholar 

  41. Kruse T, Popier A (2016) Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting. Stoch Process Appl 126(9):25542592

    Article  MathSciNet  Google Scholar 

  42. Nualart D, Schoutens W (2001) Backward stochastic differential equations and Feynman–Kac formula for Lévy processes, with applications in finance. Bernoulli 7(5):761–776

    Article  MathSciNet  Google Scholar 

  43. Pardoux E, Peng S (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14:55–61

    Article  MathSciNet  Google Scholar 

  44. Royer M (2006) Backward stochastic differential equations with jumps and related non-linear expectations. Stoch Proc Appl 116:13581376

    Article  MathSciNet  Google Scholar 

  45. Shen L, Elliott RJ (2011) Backward stochastic differential equations for a single jump process. Stoch Anal Appl 29:654–673

    Article  MathSciNet  Google Scholar 

  46. Situ R (1997) On solutions of backward stochastic differen tial equations with jumps and applications. Stoch Process Their Appl 66(2):209236

    Google Scholar 

  47. Tang SJ, Li XJ (1994) Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J Control Optim 32:1447–1475

    Article  MathSciNet  Google Scholar 

  48. Xia J (200) Backward stochastic differential equation with random measures. Acta Math Appl Sin (English Ser.) 16 (3)225–234

  49. Yao S (2017) \(L^p\) solutions of backward stochastic differential equations with jumps. Stoch Process Appl 127(11):34653511

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Jean Jacod for discussions on connections between BSDEs and point processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvia Confortola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Confortola, F. \(L^p\) solution of backward stochastic differential equations driven by a marked point process. Math. Control Signals Syst. 31, 1 (2019). https://doi.org/10.1007/s00498-018-0230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-018-0230-4

Keywords

Mathematics Subject Classification

Navigation