Skip to main content
Log in

Estimating hydrologic model uncertainty in the presence of complex residual error structures

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Hydrologic models provide a comprehensive tool to estimate streamflow response to environmental variables. Yet, an incomplete understanding of physical processes and challenges associated with scaling processes to a river basin, introduces model uncertainty. Here, we apply generalized additive models of location, scale and shape (GAMLSS) to characterize this uncertainty in an Atlantic coastal plain watershed system. Specifically, we describe distributions of residual errors in a two-step procedure that includes model calibration of the soil and water assessment tool (SWAT) using a sequential Bayesian uncertainty algorithm, followed by time-series modeling of residual errors of simulated daily streamflow. SWAT identified dominant hydrological processes, performed best during moderately wet years, and exhibited less skill during times of extreme flow. Application of GAMLSS to model residuals efficiently produced a description of the error distribution parameters (mean, variance, skewness, and kurtosis), differentiating between upstream and downstream outlets of the watershed. Residual error distribution is better described by a non-parametric polynomial loess curve with a smooth transition from a Box–Cox t distribution upstream to a skew t type 3 distribution downstream. Overall, the fitted models show that low flow events more strongly influence the residual probability distribution, and error variance increases with streamflow discharge, indicating correlation and heteroscedasticity of residual errors. These results provide useful insights into the complexity of error behavior and highlight the value of using GAMLSS models to conduct Bayesian inference in the context of a regression model with unknown skewness and/or kurtosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbaspour KC (2015) User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, p 93

    Google Scholar 

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-Alpine/Alpine Thur watershed using SWAT. J Hydrol 333:413–430

    Article  Google Scholar 

  • Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43:W01403. https://doi.org/10.1029/2005WR004745

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19(6):716–723

    Article  Google Scholar 

  • Amatya KM, Jha MK (2011) Evaluating the SWAT model for a low-gradient forested watershed in Coastal South Carolina. Trans ASABE 54(6):2151–2163

    Article  Google Scholar 

  • Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface-groundwater flow model. J Hydrol 142:47–69

    Article  Google Scholar 

  • ASCE (1993) Criteria for evaluation of watershed models. J. Irrig Drain Eng 119(3):429–442

    Article  Google Scholar 

  • Bales JD, Pope BF (2001) Identification of changes in streamflow characteristics. J Am Water Resour Assoc 37(1):91–104

    Article  Google Scholar 

  • Bates BV, Campbell AEP (2001) Markov Chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour Res 37(4):937–947

    Article  Google Scholar 

  • Beven KJ (2008) On doing better hydrological science. Hydrol Process 22:3549–3553. https://doi.org/10.1002/hyp.7108

    Article  Google Scholar 

  • Beven KJ, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems. J Hydrol 249:11–29

    Article  Google Scholar 

  • Beven K, Smith PJ, Freer JE (2008) So just why would a modeler choose to be incoherent. J Hydrol 354:15–32

    Article  Google Scholar 

  • Box GEP, Tiao GC (1992) Bayesian inference in statistical analysis. Wiley, New York, p 588

    Book  Google Scholar 

  • Butts MB, Payne JT, Kristensen M, Madsen H (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol 298:242–266. https://doi.org/10.1016/j.jhydrol.2004.03.042

    Article  Google Scholar 

  • Clark MP et al (2015) A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour Res 51:2498–2514. https://doi.org/10.1002/2015WR017198

    Article  Google Scholar 

  • Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319

    Article  CAS  Google Scholar 

  • Del Giudice D, Honti M, Scheidegger A, Albert C, Reichert P, Rieckermann J (2013) Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrol Earth Syst Sci 17(2013):4209–4225

    Article  Google Scholar 

  • Del Giudice D, Albert C, Rieckermann J, Reichert P (2016) Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation. Water Resour Res 52:3162–3186. https://doi.org/10.1002/2015WR017871

    Article  Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomised quantile residuals. J Comput Gr Stat 5:236–244

    Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties (with comments and rejoinder). Stat Sci 11:89–121

    Article  Google Scholar 

  • El Adlouni S, Bobeé B, Ouarda TBMJ (2008) On the tails of extreme event distributions in hydrology. J Hydrol 355:16–33

    Article  Google Scholar 

  • Etemadi H, Samadi S, Sharifikia M (2014) Uncertainty analysis of statistical downscaling techniques in an Arid region. Clim Dyn 42:2899–2920

    Article  Google Scholar 

  • Etemadi H, Samadi S, Sharifikia M, Smoak JM (2015) Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1552-5

    Google Scholar 

  • Fernandez C, Steel MFJ (1998) On bayesian modelling of fat tails and skewness. J Am Stat Assoc 93:359–371

    Google Scholar 

  • Fernandez C, Osiewalski J, Steel MFJ (1995) Modeling and inference with v-spherical distributions. J Am Stat Assoc 90(432):1331–1340

    Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurate measures of information. Water Resour Res 34(4):751–763

    Article  Google Scholar 

  • Guzman JA, Moriasi DN, Gowda PH, Steiner JL, Starks PJ, Arnold JG, Srinivasan R (2015) A model integration framework for linking SWAT and MODFLOW. Environ Model Softw 73:103–116

    Article  Google Scholar 

  • Han JC, Huang GH, Zhang H et al (2014) Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stoch Environ Res Risk Assess 28:973. https://doi.org/10.1007/s00477-013-0792-0

    Article  Google Scholar 

  • Hantush M, Kalin L (2008) Stochastic residual-error analysis for estimating hydrologic model predictive uncertainty. J Hydrol Eng. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(585)585-596

    Google Scholar 

  • Hargreaves GL, Hargreaves GH, Riley JP (1985) Agricultural benefits for Senegal River Basin. J Irrig Drain E ASCE 111:113–124

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. Elsevier, Amsterdam. http://www.stats.uwo.ca/faculty/aim/1994Book/

  • Honti M, Stamm C, Reichert P (2013) Integrated uncertainty assessment of discharge predictions with a statistical error model. Water Resour Res 49(2013):4866–4884

    Article  Google Scholar 

  • Joseph JF, Guillaume JHA (2013) Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environ Model Softw 46:292–298. https://doi.org/10.1016/j.envsoft.2013.03.012

    Article  Google Scholar 

  • Katz RW (2010) Statistics of extremes in climate change. Clim Change 100:71–76

    Article  CAS  Google Scholar 

  • Kim T-W, Valdés JB (2005) Synthetic generation of hydrologic time series based on nonparametric random generation. J Hydrol Eng 105:395–404

    Article  Google Scholar 

  • Kuczera G (1983) Improved parameter inference in catchment models, 1. Evaluating parameter uncertainty. Water Resour Res 19(5):1151–1162. https://doi.org/10.1029/WR019i005p01151

    Article  Google Scholar 

  • Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing. Water Resour Res 48:W01526. https://doi.org/10.1029/2011WR010608

    Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241

    Article  Google Scholar 

  • McCuen R, Knight Z, Cutter A (2006) Evaluation of the Nash-Sutcliffe Efficiency Index. J Hydrol Eng. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)597-602

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, volume 37 of monographs on statistics and applied probability, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    Google Scholar 

  • McMillan H, Krueger T, Freer J (2012) Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality. Hydrol Process 26:4078–4111

    Article  CAS  Google Scholar 

  • Melching CS, Bauwens W (2001) Uncertainty in coupled nonpoint source and stream water-quality models. J Water Resour Plann Manag 1276:403–413

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Proceedings of the 19th symposium of the society for experimental biology. Cambridge University Press, New York, pp 205–233

  • Moore C, Wöhling T, Doherty J (2010) Efficient regularization and uncertainty analysis using a global optimization methodology. Water Resour Res 46:W08527. https://doi.org/10.1029/2009WR008627

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Mosaedi A, Zare Abyane H, Ghabaei Sough M, Zahra Samadi S (2015) Long-lead drought forecasting using equiprobability transformation function for reconnaissance drought index. Water Resour Manag 29:2451–2469

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part 1. A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2001) Soil and water assessment tool user’s manual, version 2000. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station

  • Nimmo JR, Healy RW, Stonestrom DA (2005) Aquifer recharge. In: Anderson MG, Bear J (eds) Encyclopedia of hydrological science: part 13. Groundwater, vol 4. Wiley, Chichester, pp 2229–2246. https://doi.org/10.1002/0470848944.hsa161a

    Google Scholar 

  • Pourreza-Bilondi M, Samadi S (2016) Quantifying the uncertainty of semiarid runoff extremes using generalized likelihood uncertainty estimation. Special issues on water resources in arid areas. Arab J Geosci. https://doi.org/10.1007/s12517-016-2650-0

    Google Scholar 

  • Pourreza-Bilondi M, Samadi SZ, Akhoond-Ali AM, Ghahraman B (2016) On the assessment of reliability in semiarid convective flood modeling using bayesian framework. ASCE Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001482

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (1996a) A semi-parametric additive model for variance heterogeneity. Statist Comput 6:57–65

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (1996b) Mean and dispersion additive models. In: Hardle W, Schimek MG (eds) Statistical theory and computational aspects of smoothing. Physica, Heidelberg, pp 215–230

    Chapter  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005a) Generalized additive models for location, scale and shape (with discussion). Appl Stat 54:507–554

    Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005b) Generalized additive models for location, scale and shape. J R Stat Soc Ser C (Appl Stat) 54:507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x

    Article  Google Scholar 

  • Riggs SR, Ames DV, Brant DR, Sager ED (2000) The Waccamaw drainage system: geology and dynamics of a coastal wetland, Southeastern North Carolina. East Carolina University, Greenville, p 165

    Google Scholar 

  • Royston P, Altman DG (1994) Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Appl Stat 43:429–467

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/

  • Sadegh M, Vrugt JA (2013) Approximate Bayesian computation in hydrologic modeling: equifinality of formal and informal approaches. Hydrol Earth Syst Sci Dis 10(4):p4739

    Article  Google Scholar 

  • Samadi S (2016) Assessing the sensitivity of SWAT physical parameters to potential evapotranspiration estimation methods over a coastal plain watershed in the Southeast United States. Hydrol Res. https://doi.org/10.2166/nh.2016.034

    Google Scholar 

  • Samadi S, Meadows EM (2017) The transferability of terrestrial water balance components under uncertainty and non-stationarity: a case study of the coastal plain watershed in the Southeastern United States. River Res Appl. https://doi.org/10.1002/rra.3127

    Google Scholar 

  • Samadi S, Tufford DL, Carbone GJ (2017) Assessing parameter uncertainty of a semi-distributed hydrology model for a shallow aquifer dominated environmental system. J Am Water Resour Assoc (JAWRA) 1–22. https://doi.org/10.1111/1752-1688.12596

  • Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46:W10531. https://doi.org/10.1029/2009WR008933

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Sénégas J, Wackernagel H, Rosenthal W et al (2001) Error covariance modeling in sequential data assimilation. Stoch Env Res Risk Assess 15:65. https://doi.org/10.1007/PL00009788

    Article  Google Scholar 

  • Serinaldi F (2011) Distributional modeling and short-term forecasting of electricity prices by generalized additive models for location, scale and shape. Energy Econ 33(6):1216–1226

    Article  Google Scholar 

  • Serinaldi F, Cuomo G (2011) Characterizing impulsive wave-in-deck loads on coastal bridges by probabilistic models of impact maxima and rise times. Coast Eng 58(9):908–926

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Wat Resour 77:17–36

    Article  Google Scholar 

  • Sevat E, Dezetter A (1991) Selection of calibration objective functions in the context of rainfall-runoff modeling in a Sudanese savannah area. Hydrol Sci J 36(4):307–330

    Article  Google Scholar 

  • Shrestha B, Cochrane TA, Caruso BS, Arias ME, Piman T (2016) Uncertainty in flow and sediment projections due to future climate scenarios for the 3S Rivers in the Mekong Basin. J Hydrol 540:1088–1104. https://doi.org/10.1016/j.jhydrol.2016.07.019

    Article  Google Scholar 

  • Sikorska AE, Scheidegger A, Banasik K, Rieckermann J (2012) Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models. Hydrol Earth Syst Sci 16:1221–1236. https://doi.org/10.5194/hess-16-1221-2012

    Article  Google Scholar 

  • Sivapalan M (2009) The secret to ‘doing better hydrological science’: change the question! Hydrol Process 23:1391–1396. https://doi.org/10.1002/hyp.7242

    Article  Google Scholar 

  • Slater AG, Clark MP (2006) Snow data assimilation via an ensemble Kalman filter. J Hydrometeorol 7(3):478–493

    Article  Google Scholar 

  • Sorooshian S, Dracup JA (1980) Stochastic parameter estimation procedures for hydrologic rainfall-runoff models—correlated and heteroscedastic error cases. Water Resour Res 16(2):430–442. https://doi.org/10.1029/WR016i002p00430

    Article  Google Scholar 

  • Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46

    Article  Google Scholar 

  • Stasinopoulos DM, Rigby RA (2016) Package ‘gamlss.dist’. https://cran.r-project.org/web/packages/gamlss.dist/index.html

  • Tian Y, Booij MJ, Xu YP (2014) Uncertainty in high and low flows due to model structure and parameter errors. Stoch Environ Res Risk Assess 28:319. https://doi.org/10.1007/s00477-013-0751-9

    Article  Google Scholar 

  • Tongal H, Booij MJ (2017) Quantification of parametric uncertainty of ANN models with GLUE method for different streamflow dynamics. Stoch Environ Res Risk Assess 31:993. https://doi.org/10.1007/s00477-017-1408-x

    Article  Google Scholar 

  • USDA-SCS (United States Department of Agriculture–Soil Conservation Service) (1972) National engineering handbook, Section 4 Hydrology, Chapter 4–10, USDA-SCS, Washington

  • Van Buuren S, Fredriks M (2001) Worm plot: a simple diagnostic device for modelling growth reference curves. Stat Med 20:1259–1277

    Article  Google Scholar 

  • Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage area. Adv Water Resour 32:1255–1266

    Article  Google Scholar 

  • Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. https://doi.org/10.1029/2007WR006720

    Article  Google Scholar 

  • Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009a) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23:1011. https://doi.org/10.1007/s00477-008-0274-y

    Article  Google Scholar 

  • Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009b) Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):271e288

    Article  Google Scholar 

  • Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19:378. https://doi.org/10.1007/s00477-005-0006-5

    Article  Google Scholar 

  • Wagener T, Sivapalan M, Troch P, Woods R (2007) Catchment classification and hydrologic similarity. Geogr Compass 1:901–931

    Article  Google Scholar 

  • Wang G, Barber ME, Chen S et al (2014) SWAT modeling with uncertainty and cluster analyses of tillage impacts on hydrological processes. Stoch Environ Res Risk Assess 28:225. https://doi.org/10.1007/s00477-013-0743-9

    Article  Google Scholar 

  • Westra S, Thyer M, Leonard M, Kavetski D, Lambert M (2014) A strategy for diagnosing and interpreting hydrological model nonstationarity. Water Resour Res 50:5090–5113. https://doi.org/10.1002/2013WR014719

    Article  Google Scholar 

  • Williams JR (1969) Flood routing with variable travel time or variable storage coefficients. Trans ASAE 12:100–103

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Yang H (2007) Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference. J Hydrol 340(2007):167–182

    Article  Google Scholar 

  • Yang J, Abbaspour KC, Reichert P, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. J Hydrol 358:1–23

    Article  Google Scholar 

  • Zhang HX, Yu SL (2004) Applying the first-order error analysis in determining the margin of safety for total maximum daily load computations. J Environ Eng 1306:664–673

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Bosch D (2009) Calibration and uncertainty analysis of the SWAT model using genetic algorithms and Bayesian model averaging. J Hydrol 374:307–317. https://doi.org/10.1016/j.jhydrol.2009.06.023

    Article  Google Scholar 

  • Zheng Y, Han F (2016) Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management. Stoch Environ Res Risk Assess 30:293. https://doi.org/10.1007/s00477-015-1091-8

    Article  Google Scholar 

  • Zhenyao S, Lei C, Tao C (2013) The influence of parameter distribution uncertainty on hydrological and sediment modeling: a case study of SWAT model applied to the Daning watershed of the Three Gorges Reservoir Region, China. Stoch Environ Res Risk Assess 27:235. https://doi.org/10.1007/s00477-012-0579-8

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (Grant # NA11OAR4310148) to the Carolinas Integrated Sciences and Assessments. The data and related code are available upon a request to the first author. The analyses were performed in R (R Development Core Team, 2013) by using the contributed package GAMLSS and other add-on packages. The authors and maintainers of this software are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samadi.

Appendix A

Appendix A

1.1 Box–Cox t distribution

Let Y be a positive random variable (here observed streamflow time series) having a BCT distribution, denoted by BCT \((\mu ,\sigma ,\upsilon ,\tau )\), defined through the transformed random variable Z (Eq. A1), which is given by (Rigby and Stasinopoulos 2005a, b)

$$Z = \left\{ {\begin{array}{*{20}l} {\frac{1}{\sigma \upsilon }\left[ {\left( {\frac{Y}{\mu }} \right)^{\upsilon } - 1} \right],} \hfill & {if\,\, \upsilon \ne 0} \hfill \\ {\frac{1}{\sigma }\log \left( {\frac{Y}{\mu }} \right),} \hfill & {if\,\, \upsilon = 0} \hfill \\ \end{array} } \right.$$
(A1)

If Y > 0, where \(\mu\) > 0 and \(\sigma\) > 0, the random variable Z is then assumed to follow a t distribution with degrees of freedom, \(\tau\) > 0, treated as a continuous parameter. From the probability density function of Y, a BCT \((\mu ,\sigma ,\upsilon ,\tau )\) random variable, is given by

$$f_{Y(y)} = f_{Z(z)} \left| {\frac{dz}{dy}} \right| = \frac{{y^{\upsilon - 1} }}{{\mu^{\upsilon } \sigma }}f_{Z(z)}$$
(A2)

where \(f_{Z(z)}\) is the exact (truncated t) probability density function of Z.

Kurtosis parameter \(\tau\) takes on values between − 3 and + 3 and determines the peakedness of the PDF, while skewness (\(\upsilon\)) parameters affects asymmetry (\(\upsilon\) > 0; Schoups and Vrugt 2010), as illustrated in Fig. 1. The density is symmetric if \(\upsilon\) = 0 and positively (negatively) skewed if \(\upsilon\) > 1 (\(\upsilon\) < 1).

1.2 Skew t type 3 distribution (ST3)

This is a “spliced-scale” distribution with PDF (see Fernandez et al. 1995; Rigby and Stasinopoulos 2005a, b), denoted by ST 3(μ, σ, ν, τ), defined by

$$f_{{Y(y\left| {\mu ,\sigma ,\upsilon ,\tau )} \right.}} = \frac{c}{\sigma }\left\{ {1 + \frac{{z^{2} }}{\tau }\left[ {\upsilon ^{2} I(y < \mu ) + \frac{1}{{\upsilon ^{2} }}I(y \ge \mu } \right]} \right\}$$
(A3)

For \(- \infty < y < \infty ,\) where \(- \infty < \mu < \infty ,\sigma > 0,\upsilon > 0,\) and \(\tau > 0\), and where \(z = (y - \mu )/\sigma\) and \(c = 2\upsilon \left| {\left[ {\sigma (1 + \upsilon^{2} )B(\frac{1}{2},\frac{\tau }{2})\tau^{{\frac{1}{2}}} } \right]} \right.\), Fernandez and Steel (1998).

Note that μ is the mode of Y. The mean and variance of Y are given by \(E(Y) = \mu + \sigma E(Z)\) and \(Var(Y) = \sigma^{2} V(Z)\), where \(E(z) = 2\tau^{{\frac{1}{2}}} (\upsilon^{2} - 1)/\left[ {(\tau - 1)B(\frac{1}{2},\frac{\tau }{2})\upsilon } \right]\) and \(E(z^{2} ) = \tau (\upsilon^{3} + \frac{1}{{\upsilon^{3} }})/\left[ {(\tau - 2)(\upsilon + \frac{1}{\upsilon })} \right]\). See Fernandez and Steel (1998) for further information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi, S., Tufford, D.L. & Carbone, G.J. Estimating hydrologic model uncertainty in the presence of complex residual error structures. Stoch Environ Res Risk Assess 32, 1259–1281 (2018). https://doi.org/10.1007/s00477-017-1489-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1489-6

Keywords

Navigation