Skip to main content

Advertisement

Log in

The influence of climate on the masting behavior of Mexican beech: growth rings and xylem anatomy

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The Mexican beech undergoes masting events, on average, every 5.5 years. These events depend directly on precipitation.

Abstract

Climate change has considerably impacted the protective functions of tropical montane cloud forests, possibly influencing the synchronicity of phenological processes and the distribution and physiology of plants. In particular, climatic fluctuations cause changes in the distribution of tree species. Mexican beech (Fagus grandifolia subsp. mexicana) is considered an endangered species, due to its restricted distribution and its being a Miocene relict, limited to tropical montane cloud forests in the mountains of the Sierra Madre Oriental in eastern Mexico. We analyzed the influence of temperature and precipitation in prompting changes to tree-ring width, as well as vessel frequency and diameter, of Mexican beech in eastern Mexico. We used growth rings and xylem vessels traits to infer the historical masting events of Mexican beech over the last 128 years. We obtained independent chronologies for Mexican beech in each of the studied sites, dating back 152–178 years. Precipitation was strongly associated with differences in tree-ring width between masting and non-masting years. Our study highlights the use of dendroecological research to detect climate-induced modifications in the vessel frequency and diameter of tree species inhabiting tropical montane cloud forests. This association also explained differences in vessel frequency and diameter recorded before, during, and after masting events. Our results revealed that Mexican beech undergoes masting events every 5.5 years on average, and that these events directly depend on minimum annual precipitation. In conclusion, our results advance our understanding on the plasticity of growth rings and vessels traits (frequency and diameter) in response to fluctuation in precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(modified from Cardoza-Martínez et al. 2013)

Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrantes J, Campelo F, García-González I, Nabais C (2013) Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees 27:655–662

    Article  Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Article  Google Scholar 

  • Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (2017) Dendroecology: tree-ring analyses applied to ecological studies. Springer, Switzerland

    Book  Google Scholar 

  • Anderegg WRL, Meinzer FC (2015) Wood anatomy and plant hydraulics in a changing climate. In: Hake U (ed) Functional and ecological xylem anatomy. Springer, Switzerland, pp 235–253

    Google Scholar 

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    Article  Google Scholar 

  • Ascoli D, Vacchiano G, Turco M, Conedera M, Drobyshev I, Maringer J, Motta R, Hacket-Pain A (2017) Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat Commun 8(2205):1–9

    CAS  Google Scholar 

  • Bayramzadeh V, Funada R, Kubo T (2008) Relationships between vessel element anatomy and physiological as well as morphological traits of leaves in Fagus crenata seedlings originating from different provenances. Trees 22:217–224

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Use R! series. Springer, New York

    Book  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Bradshaw RHW, Kito K, Gieseckre T (2010) Factors influencing the Holocene history of Fagus. For Ecol Manag 259:2204–2212

    Article  Google Scholar 

  • Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 27:485–496

    Article  Google Scholar 

  • Burns KC (2012) Masting in a temperate tree: evidence for environmental prediction. Austral Ecol 37:175–182

    Article  Google Scholar 

  • Cardoza-Martínez GF, Cerano-Paredes J, Villanueva-Díaz J, Cervantes-Martínez R, Guerra de la Cruz V, Estrada-Ávalos J (2013) Annual precipitation reconstruction of the Eastern region of Tlaxcala state. Rev Mex Cie Forest 5:110–127

    Google Scholar 

  • Chan BC, Cain JC (1967) The effect of seed formation on subsequent flowering in apple. J Am Soc Hortic Sci 91:63–68

    Google Scholar 

  • Climate-data.org (2016) Historical average temperature. http://climate-data.org/. Accessed 10 Oct 2016

  • Cook ER, Holmes RL (1995) Guide for computer program ARSTAN. In: Grissino-Mayer HD, Holmes RL, Fritts HC (eds) The International tree-ring data bank program library version 2.0 User’s Manual, Laboratory of Tree-Ring Research. University of Arizona, Arizona, pp 75–87

    Google Scholar 

  • Cook ER, Holmes RL (1999) Program ARSTAN-chronology development with statistical analysis (users manual for program ARSTAN). Laboratory of Tree-Ring Research. University of Arizona, USA

    Google Scholar 

  • D´Arrigo R, Davi N, Jacoby G, Wilson R, Wiles G (2014) Dendroclimatic studies: trees growth and climate change in northern forest. American Geophysical Union, Canada

    Book  Google Scholar 

  • Denk T, Grimm GW (2009) The biogeographic history of beech trees. Rev Palaeobot Palynol 158:83–100

    Article  Google Scholar 

  • Dittmar C, Elling W (2007) Dendroecological investigation of the vitality of Common Beech (Fagus sylvatica L.) in mixed mountain forests of the Northern Alps (South Bavaria). Dendrochronologia 2:37–56

    Article  Google Scholar 

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259:2160–2170

    Article  Google Scholar 

  • Drobyshev I, Niklasson M, Mazerolle MJ, Bergeron Y (2014) Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric For Meteorol 192–193:9–17

    Article  Google Scholar 

  • Ehnis DE (1981) Fagus mexicana Martínez: su ecología e importancia. B. Sc. Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City

  • Eller CB, Barros FV, Bittencourt PRL, Rowland L, Mencuccini M, Oliveira RS (2017) Xylem hidraulic safety and construction costs determine tropical tree growth. Plant Cell Environ 2018:1–15

    Google Scholar 

  • Eşen D (2000) Ecology and control of Rhododendron (Rhododendron ponticum L.) in Turkish eastern beech (Fagus orientalis Lipsky) forest. Doctoral thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

  • Esperón-Rodríguez M, Barradas VL (2015) Comparing environmental vulnerability in the montane cloud forest of eastern Mexico: a vulnerability index. Ecol Indic 52:300–310

    Article  Google Scholar 

  • Etemad V, Sefidi K (2017) Seed production and masting behaviour in Oriental beech (Fagus orientalis Lipsky) forests of northern Iran. Forest Ideas 23:65–76

    Google Scholar 

  • Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819

    Article  Google Scholar 

  • FAO (2015) Global forest resources assessment 2015: how are the world´s forest changing? Food Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO-UNESCO (1988) Soil map of the world. Revised legend. World soil resources report 60. FAO-UNESCO, Rome

    Google Scholar 

  • Fletcher MS (2015) Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol 216:527–533

    Article  Google Scholar 

  • Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • García E (1988) Modificaciones al sistema de clasificación climática de Köppen, México, Offset Larios. Mexico City

  • García-González I, Fonti P (2008) Ensuring a representative sample of earlywood vessels for dendroclimatological studies: an example from two ring-porous species. Trees 22:237–244

    Article  Google Scholar 

  • Gareca EE, Fernández M, Stanton S (2010) Dendrochronological investigation of the high Andean tree species Polylepis besseri and implications for management and conservation. Biodivers Conserv 19:1839–1851

    Article  Google Scholar 

  • Génova M, Moya P (2012) Dendroecological analysis of relict pine forests in the center of the Iberian Peninsula. Biodivers Conserv 21:2949–2965

    Article  Google Scholar 

  • Godínez-Ibarra O, Ángeles-Pérez G, López-Mata L, García-Moya E, Valdez-Hernández JV, Santos-Posadas H, Trinidad-Santos A (2007) Lluvia de semillas y emergencia de plántulas de Fagus grandifolia subsp. mexicana en La Mojonera, Hidalgo, México. Rev Mex Biodivers 78:117–128

    Google Scholar 

  • González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manríquez G, Newton AC (2011) The Red List of Mexican cloud forest trees. Fauna & Flora International (FFI), Cambridge

    Google Scholar 

  • González-González BD, Rozas V, García-González I (2013) Early vessels of the sub-Meditterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petrae at the Atlantic-Mediterranean boundary. Trees 28:237–252

    Article  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221

    Google Scholar 

  • Gual-Díaz M, Rendón-Correa A (2014) Bosques mesófilos de montaña de México: diversidad, ecología y manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City

    Google Scholar 

  • Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers´ climate on ring width. Tree Physiol 35:319–330

    Article  PubMed  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Hukusima T, Matsui T, Nishio T, Pignatti S, Yang L, Lu SY et al (2013) Phytosociology of the beech (Fagus) forest in East Asia. Springer, Heidelberg

    Book  Google Scholar 

  • Kabeya D, Inagaki Y, Noguchi K, Han Q (2017) Growth rate reduction causes a decline in the annual incremental trunk growth in masting Fagus crenata trees. Tree Physiol 37:1444–1452

    Article  PubMed  Google Scholar 

  • Kelly D (1994) The evolutionary ecology of mast seeding. Trees 9:465–470

    CAS  Google Scholar 

  • Kenkel NC, Orlóci L (1986) Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919–928

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Kon H, Noda T (2007) Experimental investigation on weather cues for mast seeding of Fagus crenata. Ecol Res 22:802–806

    Article  Google Scholar 

  • Latte N, Lebourgeois F, Claessens H (2015) Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77

    Article  Google Scholar 

  • Lemoine N, Sheffield J, Dukes JS, Knapp AK, Smith MD (2016) Terrestrial precipitation analysis (TPA): a resource for characterizing long-term precipitation regimes and extremes. Methods Ecol Evol 7:1396–1401

    Article  Google Scholar 

  • Manos PS, Stanford AM (2001) The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the northern hemisphere. Int J Plant Sci 162:S77–S93

    Article  Google Scholar 

  • Matyas V (1965) Some ecological factors affecting the periodicity of fruit in oak and beech. Erdesz Kutatas Budapest 61:99–121 (in Hungarian with German summary)

    Google Scholar 

  • Ming-Lee T, Markowitz EM, Howe PD, Ko CY, Leiserowitz AAA (2015) Predictors of public climate change awareness and risk perception around the world. Nat Clim Change 5:1014–1020

    Article  Google Scholar 

  • Norton DA, Kelly D (1988) Mast seeding over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct Ecol 2:399–408

    Article  Google Scholar 

  • Noyer E, Lachenbruch B, Dlouhá J, Collet C, Ruelle J, Ningre F, Fournier (2017) Xylem traits in European beech (Fagus sylvatica L.) display a large plasticity in response to canopy release. Ann For Sci 76:46

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Michin PR, Hara RBO´, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Vegan: community ecology package. R package version 2.3-3. http://cran.r-project.org. Accessed 20 Nov 2016

  • Övergaard R, Gemmel P, Karlsson M (2007) Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:555–565

    Article  Google Scholar 

  • Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding resources, weather, cues, and selection. New Phytol 212:546–562

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez PM (1999) Las hayas de México, monografía de Fagus grandifolia spp. mexicana. Universidad Autónoma de Chapingo, Chapingo, Mexico City

    Google Scholar 

  • Peters R (1992) Ecology of beech forests in the northern Hemisphere. Doctoral Thesis, Wageningen Agricultural University, Wageningen, Germany

  • Peters R (1995) Architecture and development of Mexican beech forest. Vegetation science in forestry. In: Box EO, Peet RK, Masuzawa T, Yamada I, Fujiwara K, Maycock PF (eds) Vegetation science in forestry. Kluwer Academic Publishers, Dordrecht, pp 325–343

    Google Scholar 

  • Piovensan G, Adams JM (2005) The evolutionary ecology of masting: does the environmental prediction hypothesis also have a role in mesic temperate forests? Ecol Res 20:739–743

    Article  Google Scholar 

  • Ponce-Reyes R, Reynoso-Rosales VH, Watson JEM, Van Der Wal J, Fuller RA, Pressey RL, Possingham HP (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change 2:448–452

    Article  Google Scholar 

  • Pourtahmasi K, Lotfiomran N, Bräuning A, Parsapajouh D (2011) Tree-ring width and vessel characteristics of Oriental beech (Fagus orientalis) along an altitudinal gradient in the Caspian forests, Northern Iran. IAWA J 32:461–473

    Article  Google Scholar 

  • Price MF, Gratzer G, Duguma LA, Kohler T, Maselli D, Rosalaura R (2011) Mountain forests in a changing world-realizing values, addressing challenges. FAO/MPS and SDC, Rome

    Google Scholar 

  • Rehm EM, Olivas P, Stroud J, Feeley KJ (2015) Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol 5:4315–4326

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinn F (2003) TSAP-Win. Time series analysis and presentation for dendrochronology and related applications for Microsoft Windows, version 4.64. http://www.rinntech.de/content/view/17/48/lang,english/index.html. Accessed 15 Dec 2016

  • Rita A, Cherubini P, Leonardi S, Todaro L, Borghetti M (2015) Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series. Tree Physiol 35:817–828

    Article  PubMed  Google Scholar 

  • Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G (2013) Current distribution and coverage of Mexican beech forests Fagus grandifolia subsp. mexicana in Mexico. Endanger Species Res 20:205–216

    Article  Google Scholar 

  • Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G (2016) Relationship between vegetation structure and microenvironment in Fagus grandifolia subsp. mexicana forest relicts in Mexico. J Plant Ecol 138:1–11

    Google Scholar 

  • Rodríguez-Ramírez EC, Luna-Vega I, Rozas V (2018) Tree-ring research of Mexican beech (Fagus grandifolia subsp. mexicana) a relict tree endemic to eastern Mexico. Tree Ring Res 74:1

    Article  Google Scholar 

  • Rossi L, Sebastiani L, Tognetti R, d´Andria R, Morelli G, Cherubini P (2013) Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 372:567–579

    Article  CAS  Google Scholar 

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251

    Article  Google Scholar 

  • Rozas V, Camarero JJ, Sangüesa-Barreda G, Souto M, García-González I (2015) Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in norther Spain. Agric For Meteorol 201:153–164

    Article  Google Scholar 

  • Rozas V, Le Quesne C, Muñoz A, Puchi P (2016) Climate and growth of Podocarpus salignus in Valdivia. Chile Dendrobiol 76:3–11

    Article  Google Scholar 

  • Rzedowski J (2015) Catálogo preliminar de las especies de árboles silvestres de la Sierra Madre Oriental. In: Flora del Bajío y de regiones adyacentes, fascículo complementario XXX. Instituto de Ecología. A.C. Centro Regional del Bajío Pátzcuaro, Michoacán, Mexico City

    Google Scholar 

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252

    Article  Google Scholar 

  • Sawada H, Kaji M, Oomura K, Igarashi Y (2008) Influences of mast seedling on tree growth dynamics of Fagus crenata and Fagus japonica in central Honshu, Japan. J Jpn For Soc 90:129–136

    Article  Google Scholar 

  • Schoene DHF, Bernier PY (2012) Adapting forestry and forest to climate change: a challenge to change the paradigm. For Policy Econ 24:12–19

    Article  Google Scholar 

  • Schweingruber FH (1996) Tree ring and environment: dendroecology. Paul Haupt AG Berne, Switzerland

    Google Scholar 

  • SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación. Segunda Sección, México, Distrito Federal [online]. http://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdf. Accessed 06 Apr 2016

  • Speer JH (2001) Oak mast history from dendrochronology: a new technique demonstrated in the southern Appalachian region. Dissertation, University of Tennessee, Knoxville, USA

  • Speer JH (2010) Fundamentals of tree ring research. University of Arizona Press, Tucson

    Google Scholar 

  • Speer JH, Bräuning A, Zhang Q, Pourtahmasi K, Gaire NP, Dawadi B et al (2016) Pinus roxburghii stand dynamics at a heavily impacted site in Nepal: research through an educational fieldweek. Dendrochronologia 41:2–9

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Suzuki W, Osumi K, Masaki T (2005) Mast seeding and its spatial scale in Fagus crenata in northern Japan. For Ecol Manag 205:105–116

    Article  Google Scholar 

  • Téllez-Valdés O, Dávila-Aranda P, Lira-Saade R (2006) The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the cloud forest in eastern Mexico. Biodivers Conserv 15:1095–1107

    Article  Google Scholar 

  • Tinoco-Rueda JA, Toledo-Medrano ML, Carrillo-Negrete IJ, Monterroso-Rivas I (2009) Clima y variabilidad climática en los municipios de Hidalgo con presencia de bosque mesófilo de montaña. In: Monterroso-Rivas AJ (ed) El bosque mesófilo en el estado de Hidalgo. Perspectiva ecológica frente al cambio climático. Universidad Autónoma Chapingo, Mexico City, pp 71–98

    Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Vacchiano G, Hacket-Pain A, Turco M, Motta R, Maringer J, Conedera M, Drobyshev I, Ascoli D (2016) Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol 215:595–608

    Article  Google Scholar 

  • Venegas-González A, von Arx G, Chagas MP, Filho MT (2015) Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees 29:423–435

    Article  Google Scholar 

  • von Arx G, Kueffer C, Fonti P (2013) Quantifying plasticity in vessel grouping added value from the image analysis tool Roxas. IAWA J 34:433–445

    Article  Google Scholar 

  • Wason JW, Dovciak M, Beier CM, Battles JJ (2017) Tree growth is more sensitive than species distributions to recent changes in climate and acidic deposition in the northeastern United States. J Appl Ecol 54:1648–1657

    Article  Google Scholar 

  • Webster GL (1995) The panorama of Neotropical cloud forest. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical Montane Forests. The New York Botanical Garden, New York, pp 53–57

    Google Scholar 

  • Williams-Linera G, Rowden A, Newton AC (2002) Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biol Cons 109:27–36

    Article  Google Scholar 

  • Wood SN (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. J R Stat Soc Ser B 62:413–428

    Article  Google Scholar 

  • Yin J, Fridley JD, Smith MS, Bauerle TL (2016) Xylem vessel traits predict the leaf phenology of native and non-native understorey species of temperate deciduous forests. Funct Ecol 30:206–214

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Osvaldo Franco-Ramos and Lorenzo Vázquez-Selem for their help with tree-ring measurements and for lending the necessary equipment; Susana Guzmán Gómez and María del Carmen Loyola Blanco (Laboratorio de Microscopía y Fotografía de la Biodiversidad II, Instituto de Biología, UNAM) for technical assistance with the digital photographs; Othón Alcántara-Ayala and Rodrigo Ortega García for their support during field work; Ana Paola Martínez-Falcón for assistance with the statistical analyses; Santiago Ramírez-Barahona and Carlos Solís Hay for his critical observations. This research was financed by the project PAPIIT IN223218. The first author thanks the financial support granted by the postdoctoral fellowship DGAPA-UNAM 2015-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isolda Luna-Vega.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Bräuning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Ramírez, E.C., Terrazas, T. & Luna-Vega, I. The influence of climate on the masting behavior of Mexican beech: growth rings and xylem anatomy. Trees 33, 23–35 (2019). https://doi.org/10.1007/s00468-018-1755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1755-3

Keywords

Navigation