Skip to main content
Log in

Interlocked grain and density patterns in Bagassa guianensis: changes with ontogeny and mechanical consequences for trees

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Interlocked grain and basic density increase from pith to bark in Bagassa guianensis and greatly improve trunk torsional stiffness and wood tenacity in the radial plane.

Abstract

Trees modulate their building material, wood, throughout their lifetime to meet changing mechanical needs. Basic density, a widely studied wood property, has been proved to be negatively correlated to growth rate and is then considered to reflect the diversity of species growth strategies. An alternative way for trees to modulate growth strategy at constant construction cost is changing the organisation of their fibre network. Interlocked grain, the result of a periodic change in the orientation of the fibres in the tangential plane, is found in numerous tropical tree species. In this study, we first describe the variations in basic density and interlocked grain occurring during ontogeny of Bagassa guianensis, a fast-growing Amazonian species, and analyse their influence on the local mechanical properties of wood at the tissue level. The observed radial patterns and properties are then incorporated in a finite element model to investigate their effect on mechanical properties of the trunk. We report extreme and highly reproducible concomitant radial variations in basic density and interlocked grain in all the sampled trees, with grain angle variations ranging from − 31° to 23°. Such changes in wood during ontogeny allows trees to tailor their growth rate while greatly improving resistance to torsion and reducing the risk of splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(illustrations adapted from Hernandez and Almeida 2003)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In this work, the fracture system will always be characterised by two letters accordingly to Ashby et al. (1985): here for example the first letter “tangential” indicating the direction normal to the crack plane and the second letter “longitudinal” referring to the direction of crack propagation.

References

  • Arets EJMM, Van der Hout P, Zagt RJ (2003) Responses of tree populations and forest composition to selective logging in Guyana. In: Steege H (ed) Long-term changes in tropical tree diversity. Studies from the Guiana Shield, Africa, Borneo and Melanesia, Tropenbos Series 22. Tropenbos International Wageningen, Wageningen, pp 95–115

    Google Scholar 

  • Arostegui A (1982) Recopilacion y analisis de studios tecnologicos de maderas peruanas. FAO, Lima

    Google Scholar 

  • Ashby MF, Easterling KE, Harrysson R, Maiti SK (1985) The fracture and toughness of woods. Proc Royal Soc A Math Phys Eng Sci 398(1815):261–280

    Article  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472

    Article  CAS  Google Scholar 

  • Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  Google Scholar 

  • Bossu J, Beauchêne J, Estevez Y, Duplais C, Clair B (2016) New Insights on wood dimensional stability influenced by secondary metabolites: the case of a fast-growing tropical species Bagassa guianensis Aubl. PLoS One 11:e0150777. https://doi.org/10.1371/journal.pone.0150777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brémaud I, Cabrolier P, Gril J, Clair B, Gérard J, Minato K, Bernard Thibaut B (2010) Identification of anisotropic vibrational properties of padauk wood with interlocked grain. Wood Sci Technol 44(3):355–367

    Article  Google Scholar 

  • Brémaud I, El Kaïm Y, Guibal D, Minato K, Thibaut B, Gril J (2012) Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types. Ann For Sci 69(3):373–386

    Article  Google Scholar 

  • Cabrolier P (2009) Is interlocked grain an adaptive trait for tropical tree species in rainforest. In: 6th Plant Biomechanics Conference, Cayenne

  • Détienne P (1979) Contrefil à rythme annuel dans les faro Daniellia sp. Bois&Forêts des Tropiques 183:67–71

    Google Scholar 

  • Falster DS, Westoby M (2005) Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111:57–66

    Article  Google Scholar 

  • Fimbel R, Sjaastad E (1994) Wood specific gravity variability in Ceiba pentandra. Wood Fiber Sci 26(1):91–96

    Google Scholar 

  • Fournier M, Dlouhá J, Jaouen G, Almeras T (2013) Integrative biomechanics for tree ecology: beyond wood density and strength. J Exp Bot 64(15):4793–4815

    Article  CAS  Google Scholar 

  • Guitard D (1987) Mécanique du matériau bois et composites. Cépaduès (ed) 238p. ISBN 2 8548 152 7

  • Hejnowicz Z, Romberger JA (1979) The common basis of wood grain figures is the systematically changing orientation of cambial fusiform cells. Wood Sci Technol 13(2):89–96

    Article  Google Scholar 

  • Hernandez RE, Almeida G (2003) Effects of wood density and interlocked grain on the shear strength of three Amazonian tropical hardwoods. Wood Fiber Sci 35(2):89–96

    Google Scholar 

  • Hernandez RE, Restrepo G (1995) Natural variation in wood properties of Alnus acuminata H.B.K. grown in Colombia. Wood and Fiber Sci 27:41–48

    CAS  Google Scholar 

  • Hietz P, Valencia R, Wright SJ (2013) Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests. Funct Ecol 27:684–704

    Article  Google Scholar 

  • King DA, Davies SJ, NurSupardi MN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19(3):445–453

    Article  Google Scholar 

  • Kollmann FFP, Côté WA (1968) Principles of wood science and technology. In: Solid wood. Springer, Berlin, 592 p

    Google Scholar 

  • Krawczyszyn J, Romberger JA (1979) Cyclical cell length changes in wood in relation to storied structure and interlocked grain. Can J Bot 57(7):787–794

    Article  Google Scholar 

  • Kribs DA (1950) Commercial foreign woods on the American market, a manual to their structure, identification, uses and distribution. Dissertation, Tropical Wood Laboratory, State College, 241 pp

  • Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer F, Lachenbruch B, Dawson T (eds) Size- and age-related changes in tree structure and function. Tree physiology, 4th edn. Springer, Dordrecht

    Google Scholar 

  • Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24(4):701–705

    Article  Google Scholar 

  • Lehnebach R, Morel H, Bossu J, Le Moguédec G, Amusant N, Beauchêne J, Nicolini E (2017) Heartwood/sapwood profile and the tradeoff between trunk and crown increment in a natural forest: the case study of a tropical tree (Dicorynia guianensis Amsh., Fabaceae). Trees Struct Funct 33(1):199–214. https://doi.org/10.1007/s00468-016-1473-7

    Article  Google Scholar 

  • Li X, Wu H, Southerton S (2011) Transcriptome profiling of Pinus Radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genom 12(1):480

    Article  CAS  Google Scholar 

  • Marsoem SN, Kikata Y (1987) The effect of interlocked grain on the mechanical properties of white meranti. Bull Nagoya Univ 9:51–77

    Google Scholar 

  • McLean JP, Zhang T, Bardet S, Beauchêne J, Thibaut A, Clair B, Thibaut B (2011) The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation. Ann For Sci 68(4):681–688

    Article  Google Scholar 

  • Montero C, Clair B, Alméras T, Van der Lee A, Gril J (2012) Relationship between wood elastic strain under bending and cellulose crystal strain. Compos Sci Technol 72(2):175–181

    Article  CAS  Google Scholar 

  • Morel H, Nicolini É, Bossu J, Blanc L, Beauchêne J (2017) Qualité et usages du bois de cinq espèces forestières adaptées à la plantation à vocation de bois d’oeuvre et testées en Guyane française. Bois&Forêts des Tropiques 334:61–74. https://doi.org/10.19182/bft2017.334.a31492

    Article  Google Scholar 

  • Morel H, Lehnebach R, Cigna J, Ruelle J, Nicolini E, Beauchene J (2018) Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic tree of Neotropical rainforest. Bois & Forêts des Tropiques 335(1):59–69

    Article  Google Scholar 

  • Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36(1):20–32

    Google Scholar 

  • Nicolini E, Beauchêne J, Leudet de la Vallée B, Ruelle J, Mangenet T, Heuret P (2012) Dating branch growth units in a tropical tree using morphological and anatomical markers: the case of Parkia velutina Benoist (Mimosoïdeae). Ann For Sci 69(5):543–555

    Article  Google Scholar 

  • Omolodun OO, Cutter BE, Krause GF, McGinnes EA (1991) Wood quality in Hildegardia barteri (Mast.) Kossern—an African tropical pioneer species. Wood Fiber Sci 23(3):419–435

    Google Scholar 

  • Osazuwa-Peters OL, Wright SJ, Zanne AE (2014) Radial variation in wood specific gravity of tropical tree species differing in growth–mortality strategies. Am J Bot 101:803–811

    Article  Google Scholar 

  • Özden S, Slater D, Ennos R (2017) Fracture properties of green wood formed within the forks of hazel (Corylus avellana L.). Trees 31:903. https://doi.org/10.1007/s00468-016-1516-0

    Article  Google Scholar 

  • Parolin P (2002) Radial gradients in wood specific gravity in trees of central Amazonian floodplains. IAWA J 23(4):449–457

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Skatter S, Kucera B (1997) Spiral grain—an adaptation of trees to withstand stem breakage caused by wind-induced torsion. Holz als Roh-und Werkstoff 55(2–4):207–213

    Article  Google Scholar 

  • Skatter S, Kucera B (1998) The cause of the prevalent directions of the spiral grain patterns in conifers. Trees 12(5):265–273

    Article  Google Scholar 

  • Skatter S, Kucera B (2000) Tree breakage from torsional wind loading due to crown asymmetry. For Ecol Manag 135(1–3):97–103

    Article  Google Scholar 

  • Slater D, Ennos R (2015) Interlocking wood grain patterns provide improved wood strength properties in forks of hazel (Corylus avellana L.). Arboricult J Int J Urban For 37(1):21–32

    Article  Google Scholar 

  • Thinley C, Palmer G, Vanclay J et al (2005) Spiral and interlocking grain in Eucalyptus dunnii. Holz Roh Werkst 63:372. https://doi.org/10.1007/s00107-005-0011-x

    Article  Google Scholar 

  • Webb CD (1969) Variation of interlocked grain in sweetgum (Liquidambar styracifula). For Prod J 19(8):45–48

    Google Scholar 

  • Weddell E (1961) Influence of interlocked grain on the bending strength of timber, with particular reference to utile and greenheart. J Inst Wood Sci 7:56–72

    Google Scholar 

  • Whitmore JL (1973) Wood density variation in Costa Rican balsa. Wood Sci 5(3):223–229

    Google Scholar 

  • Wiemann MC, Williamson GB (1988) Extreme radial changes in wood specific gravity in some tropical pioneers. Wood Fiber Sci 20(3):344–349

    Google Scholar 

  • Wiemann MC, Williamson GB (1989) Radial gradients in the specific gravity of wood in some tropical and temperate trees. For Sci 35(1):197–210

    Google Scholar 

  • Williamson GB, Wiemann MC (2010) Age-dependent radial increases in wood specific gravity of tropical pioneers in Costa Rica. Biotropica 42(5):590–597

    Article  Google Scholar 

  • Williamson GB, Wiemann MC, Geaghan JP (2012) Radial wood allocation in Schizolobium parahyba. Am J Bot 99(6):1010–1019

    Article  Google Scholar 

  • Włoch W, Jura-Morawiec J, Kojs P, Iqbal M, Krawczyszyn J (2009) Does intrusive growth of fusiform initials really contribute to circumferential growth of vascular cambium? Botany 87(2):154–163

    Article  Google Scholar 

  • Woodcock DW, Shier AD (2002) Wood specific gravity and its radial variations: the many ways to make a tree. Trees 16:437–443

    Article  Google Scholar 

  • Yamamoto H, Sassus F, Ninomiya M, Gril J (2001) A model of anisotropic swelling and shrinking process of wood. Wood Sci Technol 35(1–2):167–181

    Article  CAS  Google Scholar 

  • Yao J (1970) Influence of growth rate on specific gravity and other selected properties of loblolly pine. Wood Sci Technol 4(3):163–175

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Eric Nicolini (CIRAD—AMAP) and Onoefé NGwete (CIRAD—ECOFOG) for their help in tree identification and field work and Yves Caraglio (CIRAD—AMAP) to share his knowledge on Bagassa guianensis architecture. This research project was financially supported by the Labex CEBA (ANR-10-LABX-25-01), CNRS-INSIS and European Social Fund awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bossu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Speck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2018_1740_MOESM1_ESM.eps

Sup. Mat. 1 A) Width of the IG half-period (P1/2) depending on their number. The red dashed line represents the median P1/2 value obtained for all IG periods. Tukey’s test showed no significant differences (pv=0.251). B) Maximal IG amplitudes corresponding to the amplitude peaks with absolute distance from the pith. Positive correlation between IG amplitude and absolute distance to the pith (IG amplitudes=2.7082+0.9931*r). The red dotted line represents the linear model (R2=0.54; pv< 2.2e-16) (EPS 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossu, J., Lehnebach, R., Corn, S. et al. Interlocked grain and density patterns in Bagassa guianensis: changes with ontogeny and mechanical consequences for trees. Trees 32, 1643–1655 (2018). https://doi.org/10.1007/s00468-018-1740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1740-x

Keywords

Navigation