Skip to main content
Log in

Somatic hybridization between diploid Poncirus and Citrus improves natural chilling and light stress tolerances compared with equivalent doubled-diploid genotypes

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The genome doubling of the allotetraploid somatic hybrid can confer greater tolerance to cold and light stress than the diploid parents and their respective tetraploid.

Abstract

Allopolyploids are generally known to display broader adaptation to abiotic stresses than their parental diploid species. In the Mediterranean area, Citrus species are subjected to abiotic constraints such as low temperature and high radiation. Tetraploids are known to resist these environmental constraints better, and so the use of new tetraploid rootstocks offers an alternative to overcome these threats to crop productivity. The objective of this study was to determine whether the use of an allotetraploid hybrid could provide greater tolerance to cold and light stresses than its diploid parents or respective doubled-diploid parents. We compared cold and light stress responses of the allotetraploid hybrid FlhorAG1 (FL-4x) with those of its diploid parents, the willow leaf mandarin (Citrus deliciosa Ten) (WLM-2x) and the Poncirus Pomeroy (Poncirus trifoliata (L.) Raf.) (POP-2x), and their respective doubled-diploids (WLM-4x and POP-4x, respectively) by measuring physiological and biochemical parameters. When subjected to cold and light stress, FL-4x showed lower photoinhibition (Fv/Fm) and less accumulation of oxidative markers (MDA and H2O2) than diploid and doubled-diploid WLM and POP genotypes. This was correlated with a greater increase for FL-4x in some antioxidant activities during cold stress (SOD, APX and GR) and light stress (SOD, APX and MDHAR mainly). Overall, our results suggest that greater antioxidant capability in FL-4x should make this allotetraploid hybrid more tolerant to low temperatures than the two WLM genotypes, and more tolerant to light stress than the two WLM and POP genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aïnouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien M-A, Fukunaga K, Ricou M, Misset M-T (2009) Hybridization, polyploidy and invasion: lessons from Spartina. (Poaceae) Bio Invasions 11:1159

    Article  Google Scholar 

  • Aleza P, Froelicher Y, Schwarz S, Agustí M, Hernández M, Juárez J, Luro F, Morillon R, Navarro L, Ollitrault P (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. An Bot 108:37–50

    Article  CAS  Google Scholar 

  • Allario T, Brumos J, Colmedore-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R (2013) Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ 36:856–868

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Balal RM, Shahid MA, Vincent C, Zotarelli L, Liu G, Mattson NS, Rathinasabapathi B, Martínez-Nicolas JJ, Garcia-Sanchez F (2017) Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environ Exp Bot 140:8–18

    Article  CAS  Google Scholar 

  • Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H (2015) The greater phenotypic homeostasis of the allopolyploid Coffea arabica improved the transcriptional homeostasis over that of both diploid parents. Plant Cell Physiol 56:2035–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao D-Y, Dilkes B, Luo H, Douglas A, Yakubova E, Lahner B, Salt DE (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimen B, Yesiloglu T (2016) Rootstock breeding for abiotic stress tolerance in citrus. In: Shanker AK, Shanker C (eds), Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rijeka

    Google Scholar 

  • Coate JE, Doyle JJ (2013) Genomics and transcriptomics of photosynthesis in polyploids. Polyploid Hybrid Genom. https://doi.org/10.1002/9781118552872.ch9

    Google Scholar 

  • Coate JE, Luciano AK, Seralathan V, Minchew KJ, Owens TG, Doyle JJ (2012) Anatomical, biochemical, and photosynthetic responses to recent allopolyploidy in Glycine dolichocarpa (Fabaceae). Am J Bot 99:55–67

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Dambier D, Benyahia H, Pensabene-Bellavia G, Kaçar YA, Froelicher Y, Belfalah Z, Lhou B, Handaji N, Printz B, Morillon R (2011) Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Rep 30:883–900

    Article  CAS  PubMed  Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. Springer, Boston

    Book  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grant V (1981) Plant speciation. New York: Columbia University Press xii, 563p.-illus., maps, chrom. nos. En 2nd edn. Maps, Chromosome numbers. General (KR, 198300748)

  • Grosser JW, Gmitter FG Jr (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tissue Organ Cult 104:343–357

    Article  CAS  Google Scholar 

  • Haleng J, Pincemail J, Defraigne J-O, Charlier C, Chapelle J-P (2007) Le stress oxydant. Rev Méd Liège 62:628–638

    CAS  PubMed  Google Scholar 

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am J Bot 99:383–396

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709

    CAS  Google Scholar 

  • Krause GH, Briantais J-M, Vernotte O (1983) Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77 K I. ∆pH-dependent quenching. Biochim Biophys Acta 723:169–175

    Article  CAS  Google Scholar 

  • Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan I, (eds) Citrus genetics, breeding and biotechnology. Cabi Cambridge pp 45–140

    Chapter  Google Scholar 

  • Lee L (1988) Citrus polyploidy—origins and potential for cultivar improvement. Aust J Agric Res 39:735

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Manzaneda AJ, Rey PJ, Anderson JT, Raskin E, Weiss-Lehman C, Mitchell-Olds T (2015) Natural variation, differentiation, and genetic trade-offs of ecophysiological traits in response to water limitation in Brachypodium distachyon and its descendent allotetraploid B. hybridum (Poaceae). Evolution 69:2689–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mouhaya W, Allario T, Brumos J, Andrés F, Froelicher Y, Luro F, Talon M, Ollitrault P, Morillon R (2010) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 37:674–685

    Article  CAS  Google Scholar 

  • Müller-Xing R, Xing Q, Goodrich J (2014) Footprints of the sun: memory of UV and light stress in plants. Front Plant Sci 5:474

    PubMed  PubMed Central  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg 1767:414–421

    Article  CAS  Google Scholar 

  • Ollitrault P, Dambier D, Froelicher Y, Carreel F, D’Hont A, Luro F, Bruyère S, Cabasson C, Lotfy F, Joumaa A, Vanel F, Maddi F, Treanton K, Grisoni M (2000) Apport de l’hybridation somatique pour l’exploitation des ressources génétiques des agrumes. Cahiers Agric 9:223–236

    Google Scholar 

  • Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidy manipulation for breeding seedless triploid citrus. Plant Breed Rev 30:323–352

    Article  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Oustric J, Morillon R, Luro F, Herbette S, Lourkisti R, Giannettini J, Berti L, Santini J (2017) Tetraploid Carrizo citrange rootstock (Citrus sinensis L. Osb. Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). J Plant Physiol 214:108–115

    Article  CAS  PubMed  Google Scholar 

  • Ruiz M, Quiñones A, Martínez-Alcántara B, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Cuenca M-R (2016a) Tetraploidy enhances boron-excess tolerance in carrizo citrange (Citrus sinensis L. Osb. Poncirus trifoliata L. Raf.). Front Plant Sci 7:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz M, Quiñones A, Martínez-Cuenca M-R, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Alcántara B (2016b) Tetraploidy enhances the ability to exclude chloride from leaves in Carrizo citrange seedlings. J Plant Phy 205:1–10

    Article  CAS  Google Scholar 

  • Santini J, Giannettini J, Pailly O, Herbette S, Ollitrault P, Berti L, Luro F (2013) Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress. Trees Struct Funct 27:71–83

    Article  CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Shang W, Feierabend J (1999) Dependence of catalase photoinactivation in rye leaves on light intensity and quality and characterization of a chloroplast-mediated inactivation in red light. Photosyn Res 59:201–213

    Article  CAS  Google Scholar 

  • Sun Z, Ma X (1998) Thermostability of plasma membrane in citrus leaves. J Huazhong Agric Univ 18:375–377

    Google Scholar 

  • Swingle WT, Reece PC, Reuther W, Webber HJ, Batchelor LD (1967) The citrus industry. University of California Press, Berkeley

    Google Scholar 

  • Tan F-Q, Tu H, Liang W-J, Long J-M, Wu X-M, Zhang H-Y, Guo W-W (2015) Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Bio 15:89

    Article  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Evol. 42:225–249

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Collectivité Territoriale de Corse (CTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.érémie Santini.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by R. Alia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 231 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oustric, J., Morillon, R., Ollitrault, P. et al. Somatic hybridization between diploid Poncirus and Citrus improves natural chilling and light stress tolerances compared with equivalent doubled-diploid genotypes. Trees 32, 883–895 (2018). https://doi.org/10.1007/s00468-018-1682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1682-3

Keywords

Navigation