Skip to main content
Log in

On the Circuit Diameter Conjecture

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

From the point of view of optimization, a critical issue is relating the combinatorial diameter of a polyhedron to its number of facets f and dimension d. In the seminal paper of Klee and Walkup (Acta Math 117:53–78, 1967), the Hirsch conjecture of an upper bound of \(f-d\) was shown to be equivalent to several seemingly simpler statements, and was disproved for unbounded polyhedra through the construction of a particular 4-dimensional polyhedron \(U_4\) with eight facets. The Hirsch bound for bounded polyhedra was only recently disproved by Santos (Ann Math 176(1):383–412, 2012). We consider analogous properties for a variant of the combinatorial diameter called the circuit diameter. In this variant, the walks are built from the circuit directions of the polyhedron, which are the minimal non-trivial solutions to the system defining the polyhedron. We are able to prove that circuit variants of the so-called non-revisiting conjecture and d-step conjecture both imply the circuit analogue of the Hirsch conjecture. For the equivalences in Klee and Walkup, the wedge construction was a fundamental proof technique. We exhibit why it is not available in the circuit setting, and what are the implications of losing it as a tool. Further, we show the circuit analogue of the non-revisiting conjecture implies a linear bound on the circuit diameter of all unbounded polyhedra—in contrast to what is known for the combinatorial diameter. Finally, we give two proofs of a circuit version of the 4-step conjecture. These results offer some hope that the circuit version of the Hirsch conjecture may hold, even for unbounded polyhedra. A challenge in the circuit setting is that different realizations of polyhedra with the same combinatorial structure may have different diameters. We adapt the notion of simplicity to work with circuits in the form of \(\mathcal {C}\)-simple and wedge-simple polyhedra. We show that it suffices to consider such polyhedra for studying circuit analogues of the Hirsch conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We thank the anonymous referee for the suggestion.

  2. A preliminary version of this result appeared in the proceedings of Eurocomb 2015 [26].

References

  1. Altshuler, A., Bokowski, J., Steinberg, L.: The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes. Discrete Math. 31(2), 115–124 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borgwardt, S., De Loera, J.A., Finhold, E.: Edges versus circuits: a hierarchy of diameters in polyhedra. Adv. Geom. 16(4), 511–530 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borgwardt, S., De Loera, J.A., Finhold, E.: The diameters of network-flow polytopes satisfy the Hirsch conjecture. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1176-x

  4. Borgwardt, S., De Loera, J.A., Finhold, E., Miller, J.: The hierarchy of circuit diameters and transportation polytopes. Discrete Appl. Math. 240, 8–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgwardt, S., Finhold, E., Hemmecke, R.: On the circuit diameter of dual transportation polyhedra. SIAM J. Discrete Math. 29(1), 113–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bremner, D., Schewe, L.: Edge-graph diameter bounds for convex polytopes with few facets. Exp. Math. 20(3), 229–237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bremner, D., Deza, A., Hua, W., Schewe, L.: More bounds on the diameters of convex polytopes. Optim. Methods Softw. 28(3), 442–450 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    Book  MATH  Google Scholar 

  9. De Loera, J.A., Hemmecke, R., Lee, J.: On augmentation algorithms for linear and integer-linear programming: from Edmonds-Karp to Bland and beyond. SIAM J. Optim. 25(4), 2494–2511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenbrand, F., Hähnle, N., Razborov, A., Rothvoß, T.: Diameter of polyhedra: limits of abstraction. Math. Oper. Res. 35(4), 786–794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Firsching, M.: Optimization Methods in Discrete Geometry. Ph.D. thesis, Freie Universität of Berlin, Berlin (2015). http://d-nb.info/1083985884/34

  12. Fritzsche, K., Holt, F.B.: More polytopes meeting the conjectured Hirsch bound. Discrete Math. 205(1–3), 77–84 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grünbaum, B., Sreedharan, V.P.: An enumeration of simplicial \(4\)-polytopes with \(8\) vertices. J. Comb. Theory 2, 437–465 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Holt, F., Klee, V.: Counterexamples to the strong \(d\)-step conjecture for \(d\ge 5\). Discrete Comput. Geom. 19(1), 33–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Holt, F.B., Klee, V.: Many polytopes meeting the conjectured Hirsch bound. Discrete Comput. Geom. 20(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Am. Math. Soc. 26(2), 315–316 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, E.D., Santos, F.: An update on the Hirsch conjecture. Jahresber. Dtsch. Math.-Ver. 112(2), 73–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klee, V., Kleinschmidt, P.: The \(d\)-step conjecture and its relatives. Math. Oper. Res. 12(4), 718–755 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klee, V., Walkup, D.W.: The \(d\)-step conjecture for polyhedra of dimension \(d < 6\). Acta Math. 117, 53–78 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Labbé, J.-P., Manneville, T., Santos, F.: Hirsch polytopes with exponentially long combinatorial segments. Math. Program. 165(2), 663–688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matschke, B., Santos, F., Weibel, C.: The width of five-dimensional prismatoids. Proc. Lond. Math. Soc. 110(3), 647–672 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Naddef, D.: The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Program. 45(1), 109–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T.: The elementary vectors of a subspace of \(R^{N}\). In: Bose, R.C., Dowling, T.A. (eds.) Combinatorial Mathematics and Its Applications. The University of North Carolina Monograph Series in Probability and Statistics, vol. 4, pp. 104–127. University of North Carolina Press, Chapel Hill (1969)

    Google Scholar 

  24. Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Santos, F., Stephen, T., Thomas, H.: Embedding a pair of graphs in a surface, and the width of 4-dimensional prismatoids. Discrete Comput. Geom. 47(3), 569–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stephen, T., Yusun, T.: The circuit diameter of the Klee–Walkup polyhedron. In: Proceedings of the 8th European Conference on Combinatorics, Graph Theory and Applications (EuroComb’15), vol. 49, pp. 505–512 (2015)

  27. Yemelichev, V.A., Kovalëv, M.M., Kravtsov, M.K.: Polytopes, Graphs and Optimisation. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  28. Yusun, T.J.: On the Circuit Diameter of Polyhedra. Ph.D. thesis, Simon Fraser University, Burnaby (2017)

Download references

Acknowledgements

This research was partially supported by an NSERC Discovery Grant for T. Stephen, and an NSERC Postgraduate Scholarship-D for T. Yusun. All illustrations were produced using the GeoGebra software (http://www.geogebra.org, International GeoGebra Institute). We thank the anonymous referees, J. de Loera and E. Finhold for comments and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamon Stephen.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgwardt, S., Stephen, T. & Yusun, T. On the Circuit Diameter Conjecture. Discrete Comput Geom 60, 558–587 (2018). https://doi.org/10.1007/s00454-018-9995-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9995-y

Keywords

Mathematics Subject Classification

Navigation