Skip to main content
Log in

Hardness and Structural Results for Half-Squares of Restricted Tree Convex Bipartite Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let \(B=(X,Y,E)\) be a bipartite graph. A half-square of B has one color class of B as vertex set, say X; two vertices are adjacent whenever they have a common neighbor in Y. Every planar graph is a half-square of a planar bipartite graph, namely of its subdivision. Until recently, only half-squares of planar bipartite graphs, also known as map graphs (Chen et al., in: Proceedings of the thirtieth annual ACM symposium on the theory of computing, STOC ’98, pp 514–523. https://doi.org/10.1145/276698.276865, 1998; J ACM 49(2):127–138. https://doi.org/10.1145/506147.506148, 2002), have been investigated, and the most discussed problem is whether it is possible to recognize these graphs faster and simpler than Thorup’s \(O(n^{120})\)-time algorithm (Thorup, in: Proceedings of the 39th IEEE symposium on foundations of computer science (FOCS), pp 396–405. https://doi.org/10.1109/SFCS.1998.743490, 1998). In this paper, we identify the first hardness case, namely that deciding if a graph is a half-square of a balanced bisplit graph is NP-complete. (Balanced bisplit graphs form a proper subclass of star convex bipartite graphs). For classical subclasses of tree convex bipartite graphs such as biconvex, convex, and chordal bipartite graphs, we give good structural characterizations of their half-squares that imply efficient recognition algorithms. As a by-product, we obtain new characterizations of unit interval graphs, interval graphs, and of strongly chordal graphs in terms of half-squares of biconvex bipartite, convex bipartite, and of chordal bipartite graphs, respectively. Good characterizations of half-squares of star convex and star biconvex bipartite graphs are also given, giving linear-time recognition algorithms for these half-squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Thorup did not give the running time explicitly, but it is estimated to be roughly \(O(n^{120})\) with n being the vertex number of the input graph; cf. [4].

References

  1. Brandenburg, F.J.: On 4-map graphs and 1-planar graphs and their recognition problem. CoRR (2015). arXiv:1509.03447

  2. Chen, Z.-Z.: Approximation algorithms for independent sets in map graphs. J. Algorithms 41, 20–40 (2001). https://doi.org/10.1006/jagm.2001.1178

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, STOC ’98, pp. 514–523 (1998). https://doi.org/10.1145/276698.276865

  4. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002). https://doi.org/10.1145/506147.506148

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Z.-Z., He, X., Kao, M.-Y.: Nonplanar topological inference and political-map graphs. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 195–204 (1999)

  6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Fixed-parameter algorithms for \((k, r)\)-center in planar graphs and map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005). https://doi.org/10.1145/1077464.1077468

    Article  MathSciNet  MATH  Google Scholar 

  7. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008). https://doi.org/10.1093/comjnl/bxm033

    Article  Google Scholar 

  8. Eickmeyer, K., Kawarabayashi, K.-I.: FO model checking on map graphs. In: Fundamentals of Computation Theory—21st International Symposium, FCT 2017, pp. 204–216. Bordeaux, France (2017). https://doi.org/10.1007/978-3-662-55751-8_17

    Chapter  Google Scholar 

  9. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983). https://doi.org/10.1016/0012-365X(83)90154-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 1563–1575 (2012). https://doi.org/10.1137/1.9781611973099.124

  11. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  12. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964). https://doi.org/10.4153/CJM-1964-055-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  14. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput. 14, 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Comput. 4, 713–717 (1981). https://doi.org/10.1137/0210054

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite graphs. Theor. Comput. Sci. 507, 41–51 (2013). https://doi.org/10.1016/j.tcs.2012.12.021

    Article  MathSciNet  MATH  Google Scholar 

  17. Kou, L.T., Stockmeyer, L.J., Wong, C.-K.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Commun. ACM 21, 135–139 (1978). https://doi.org/10.1145/359340.359346

    Article  MathSciNet  MATH  Google Scholar 

  18. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algorithms 2(2), 178–208 (2006). https://doi.org/10.1145/1150334.1150337. (Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2004) pp. 952–961.)

    Article  MathSciNet  Google Scholar 

  19. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal graphs. SIAM J. Discrete Math. 18(1), 83–102 (2004). https://doi.org/10.1137/S0895480103425930

    Article  MathSciNet  MATH  Google Scholar 

  20. Le, H.-O., Le, V.B.: Hardness and structural results for half-squares of restricted tree convex bipartite graphs. In: Proceedings of the 23rd Annual International Computing and Combinatorics Conference, COCOON, pp. 359–370 (2017). https://doi.org/10.1007/978-3-319-62389-4_30

    Google Scholar 

  21. Le, V.B., Peng, S.-L.: On the complete width and edge clique cover problems. In: Proceedings of the 21st Annual International Computing and Combinatorics Conference 2015, COCOON, pp. 537–547 (2015). Extended version to appear in Journal ofCombinatorial Optimization, available on-line under http://link.springer.com/article/10.1007/s10878-016-0106-9

    Google Scholar 

  22. Lehel, J.: A characterization of totally balanced hypergraphs. Discrete Math. 57, 59–65 (1985). https://doi.org/10.1016/0012-365X(85)90156-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, T.: Restricted bipartite graphs: comparison and hardness results. In: Proceedings of the Tenth International Conference on Algorithmic Aspects of Information and Management, pp. 241–252 . LNCS 8546, AAIM, (2014)

  24. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16, 854–879 (1987). https://doi.org/10.1137/0216057

    Article  MathSciNet  MATH  Google Scholar 

  25. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003). https://doi.org/10.1007/s00453-003-1032-7

    Article  MathSciNet  MATH  Google Scholar 

  26. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  27. Mnich, M., Rutter, I., Schmidt, J.M.: Linear-time recognition of map graphs with outerplanar witness. In: Proceedings of the 15th Scandinavian Symposium and Workshops on Algorithm Theory, Article No. 5, SWAT, pp. 5:1–5:14 (2016). http://www.dagstuhl.de/dagpub/978-3-95977-011-8

  28. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math. 54(1), 81–88 (1994). https://doi.org/10.1016/0166-218X(94)00023-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indag. Math. 80(5), 406–424 (1977). https://doi.org/10.1016/1385-7258(77)90055-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, Cambridge (1969)

    Google Scholar 

  31. Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, Toronto (2003)

    Book  Google Scholar 

  32. Thorup, M.: Map graphs in polynomial time. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science, FOCS, pp. 396–405 (1998). https://doi.org/10.1109/SFCS.1998.743490

Download references

Acknowledgements

We thank Hannes Steffenhagen for his careful reading and very helpful remarks. We also thank one of the unknown referees for his/her helpful comments and suggestions, and for pointing out a gap in an earlier proof of Lemma 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Bang Le.

Additional information

This paper is an extended version of the COCOON 2017 paper [20].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, HO., Le, V.B. Hardness and Structural Results for Half-Squares of Restricted Tree Convex Bipartite Graphs. Algorithmica 81, 4258–4274 (2019). https://doi.org/10.1007/s00453-018-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0440-7

Keywords

Mathematics Subject Classification

Navigation