Skip to main content
Log in

Breaking the \(\log n\) barrier on rumor spreading

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

\(O(\log n)\) rounds has been a well known upper bound for rumor spreading using push&pull in the random phone call model (i.e., uniform gossip in the complete graph). A matching lower bound of \(\varOmega (\log n)\) is also known for this special case. Under the assumption of this model and with a natural addition that nodes can call a partner once they learn its address (e.g., its IP address) we present a new distributed, address-oblivious and robust algorithm that uses push&pull with pointer jumping to spread a rumor to all nodes in only \(O(\sqrt{\log n})\) rounds, w.h.p. This algorithm can also cope with \(F= O(n/2^{\sqrt{\log n}})\) node failures, in which case all but O(F) nodes become informed within \(O(\sqrt{\log n})\) rounds, w.h.p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this paper with high probably or w.h.p. is with probability at least \(1-n^{-1-\varOmega (1)}\).

  2. A call, in which no data is sent (e.g., the rumor, or a pointer), is not considered as a message.

  3. Note that in [23] the authors consider arbitrary node weights, which are 1 / n for all nodes in our case.

References

  1. Avin, C., Elsässer, R.: Faster rumor spreading: breaking the logn barrier. In: Proceedings of the 27th International Symposium on Distributed Computing–DISC 2013, pp. 209–223. Springer, Berlin (2013)

  2. Avin, C., Lotker, Z., Pignolet, Y.-A., Turkel, I.: From caesar to twitter: structural properties of elites and rich-clubs. CoRR abs/1111.3374 (2012)

  3. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient randomised broadcasting in random regular networks with applications in peer-to-peer systems. In: Proceedings of the 27th ACM Symposium on Principles of Distributed Computing , pp. 155–164 (2008)

  4. Berenbrink, P., Elsässer, R., Sauerwald, T.: Communication complexity of quasirandom rumor spreading. Algorithmica 72(2), 467–492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor-Hillel, K., Haeupler, B., Kelner, J., Maymounkov, P.: Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance. In: Proceedings of the 44th ACM Symposium on Theory of Computing, pp. 961–970 (2012)

  6. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Opportunistic spatial gossip over mobile social networks. In: Proceedings of the 1st Workshop on Online Social Networks , pp. 73–78 (2008)

  7. Chung, F., Lu, L.: Connected components in random graphs with a given degree expected sequence. Ann. Comb. 6, 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deb, S., Médard, M., Choute, C.: Algebraic gossip: a network coding approach to optimal multiple rumor mongering. IEEE Trans. Inf. Theory 52(6), 2486–2507 (2006)

    Article  MATH  Google Scholar 

  9. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing , pp. 1–12 (1987)

  10. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proceeding of the 43rd Annual ACM Symposium on Theory of Computing , pp. 21–30 (2011)

  11. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 773–781 (2008)

  12. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders, Push vs. Pull and Robustness. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming, pp. 366–377 (2009)

  13. Elsässer, R., Sauerwald, T.: On the runtime and robustness of randomized broadcasting. In: Proceedings of the 17th International Symposium on Algorithms and Computation, pp. 349–358 (2006)

  14. Elsässer, R., Sauerwald, T.: The power of memory in randomized broadcasting. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 218–227 (2008)

  15. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1(4), 447–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1642–1660 (2012)

  17. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Appl. Math. 10(1), 57–77 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: 28th International Symposium on Theoretical Aspects of Computer Science, pp. 57–68 (2011)

  19. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message loss. SIAM J. Comput. 39(8), 3830–3859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haeupler, B.: Simple, fast and deterministic gossip and rumor spreading. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 705–716 (2013)

  21. Haeupler, B., Malkhi, D.: Optimal gossip with direct addressing. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, New York, NY, PODC ’14, pp. 176–185. ACM (2014)

  22. Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed networks. In: Proceedings of the 18th Annual ACM symposium on Principles of Distributed Computing, pp. 229–237 (1999)

  23. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 565–574 (2000)

  24. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 482–491 (2003)

  25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

  26. Kutten, S., Peleg, D.: Asynchronous resource discovery in peer-to-peer networks. Comput. Netw. 51(1), 190–206 (2007)

    Article  MATH  Google Scholar 

  27. Kutten, S., Peleg, D., Vishkin, U.: Deterministic resource discovery in distributed networks. Theory Comput. Syst. 36(5), 479–495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann, San Francisco (1992)

    MATH  Google Scholar 

  29. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in o (log log n) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mahlmann, P., Schindelhauer, C.: Distributed random digraph transformations for peer-to-peer networks. In: Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 308–317 (2006)

  31. Melamed, R., Keidar, I.: Araneola: a scalable reliable multicast system for dynamic environments. In: Proceedings Third IEEE International Symposium on Network Computing and Applications, 2004 (NCA 2004), pp. 5–14. IEEE (2004)

  32. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  33. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raab, M., Steger, A.: “Balls into bins”—a simple and tight analysis. In: Proceedings of the RANDOM/APPROX. pp. 159–170 (1998)

  35. Sauerwald, T.: On mixing and edge expansion properties in randomized broadcasting. Algorithmica 56(1), 51–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Avin.

Additional information

An extended abstract of this work appeared in [1]. The work of the second author was partially supported by the Austrian Science Fund (FWF) under contract P25214-N23 “Analysis of Epidemic Processes and Algorithms in Large Networks”. The main result of this paper solves an open problem presented at Dagstuhl Seminar 13042 “Epidemic Algorithms and Processes: From Theory to Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avin, C., Elsässer, R. Breaking the \(\log n\) barrier on rumor spreading. Distrib. Comput. 31, 503–513 (2018). https://doi.org/10.1007/s00446-017-0312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-017-0312-4

Keywords

Navigation