, Volume 137, Issue 2, pp 305–314 | Cite as

Comparative anatomy of pupal tarsi in caddisflies (Insecta: Trichoptera) with focus on the claw system

  • Frank Friedrich
  • Martin Kubiak
Original paper


The decticous pupa of Trichoptera is an unusual case, as the larvae pupate in a silk cocoon under water. This leads to the problem that the pharate adult (i.e. the imago prior to eclosion within the pupal exuviae) has to cut through the cocoon and actively swim to land. To solve the latter problem, pupal legs are specifically modified. The midlegs are usually equipped with rows of hairs and are used as swimming legs to bring the insects to the water surface or the shore. Some species shed the pupal exuviae while floating on the water surface, others after crawling on stones or plants. It was assumed that this is assisted by attachment structures, especially the pupal claws. Pupal claws can differ distinctly in trichopteran lineages. However, detailed information on this character system is very limited in the literature. Furthermore, the functional principle of the pupal claw system is not well understood. Here, we present detailed data on the pupal tarsus of 15 species (14 families) using confocal laser scanning microscopy and histology. The results are discussed in terms of functional morphology, relations to larval habitat, pupal behavior, and phylogenetic implications.


Trichoptera Tarsus Claws Pupa Eclosion Pharate adult Attachment structures 



The study was financed by the German Science Foundation (DFG, FR 3062/2-1). This is gratefully acknowledged. We thank Alice Wells (Australian National Insect Collection, CSIRO, Canberra), Matthias Gorka (Büro für GewässerÖkologie, Karlsruhe), and Hans Pohl (FSU Jena) for providing valuable specimens. Furthermore, we thank Sabine Gaude (Universität Hamburg) for preparing histological section of high quality and Carina Edel (Universität Hamburg) for helping with the visualization of 3D data. Comments on the manuscript by two anonymous reviewers are also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or living animals performed by any of the authors.


  1. Barnard KH (1931) The Cape alder-flies (Neuroptera, Megaloptera). Trans Roy Soc South Afr 19:169–184CrossRefGoogle Scholar
  2. Betten C (1934) The caddis flies or Trichoptera of New York State. NY State Mus Bull 292:1–116Google Scholar
  3. Beutel RG, Friedrich F, Yang XK, Ge S (2014) Insect morphology and phylogeny. De Gruyter, BerlinGoogle Scholar
  4. Byers GW (1963) The life history of Panorpa nuptialis (Mecoptera: Panorpidae). Ann Entomol Soc Am 56:142–149CrossRefGoogle Scholar
  5. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8:1–17CrossRefGoogle Scholar
  6. Cooper KW (1974) Sexual biology, chromosomes, development, life histories and parasites of Boreus., especially of B. notoperates. A Southern California Boreus. II. (Mecoptera: Boreidae). Psyche 81:84–120CrossRefGoogle Scholar
  7. Crowson RA (1981) The biology of the Coleoptera. Academic Press, LondonGoogle Scholar
  8. Currie GA (1932) Some notes on the biology and morphology of the immature stages of Harpobittacus tillyardi (Order Mecoptera). Proc Linn Soc NS Wales 57:116–122Google Scholar
  9. Deans AR, Mikó I, Wipfler B, Friedrich F (2012) Evolutionary phenomics and the emerging enlightenment of arthropod systematics. Invertebr Syst 26:323–330CrossRefGoogle Scholar
  10. Frania HE, Wiggins GB (1997) Analysis of morphological and behavioural evidence for the phylogeny and higher classification of Trichoptera (Insecta). R Ont Mus Life Sci Contrib 160:1–67Google Scholar
  11. Friedrich F, Matsumura Y, Pohl H, Bai M, Hörnschemeyer T, Beutel RG (2014) Insect morphology in the age of phylogenomics: innovative techniques and its future role in systematics. Entomol Sci 17:1–24CrossRefGoogle Scholar
  12. González MA, Vieira-Lanero R, Cobo F (2000) The immature stages of Ptilocolepus extensus McLachlan, 1884 (Trichoptera: Hydroptilidae: Ptilocolepinae) with notes on biology. Aquat Insects 22:27–38CrossRefGoogle Scholar
  13. Hamilton SW (1985) The larva and pupa of Beraea gorteba Ross (Trichoptera: Beraeidae). Proc Entomol Soc Wash 87:783–789Google Scholar
  14. Hickin NE (1967) Caddis Larvae. Larvae of the British Trichoptera. Hutchinson & Co. Ltd., LondonGoogle Scholar
  15. Hinton HE (1946) A new classification of insect pupae. Proc Zool Soc Lond 116:282–328CrossRefGoogle Scholar
  16. Hinton HE (1949) On the function, origin, and classification of pupae. Proc Trans S London Entomol Nat Hist Soc 1947–1948:111–154Google Scholar
  17. Holzenthal RW, Blahnik RJ, Prather AL, Kjer KM (2007) Order Trichoptera Kirby, 1813 (Insecta). Caddisflies Zootaxa 1668:639–698Google Scholar
  18. Holzenthal RW, Morse JC, Kjer KM (2011) Order Trichoptera Kirby, 1813. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148. Magnolia Press, Auckland, pp 209–211Google Scholar
  19. Ivanov VD (2002) Contribution to the Trichoptera phylogeny: new family tree with considerations of Trichoptera–Lepidoptera relations. Nov Suppl Entomol 15:277–292Google Scholar
  20. Kaltenbach A (1978) Morphologie und Physiologie. In: Kaltenbach A (ed) Handbook of zoology IV: arthropoda: Insecta, part 28 Mecoptera (Schnabelhafte, Schnabelfliegen). Gruyter, Berlin, pp 25–86Google Scholar
  21. Kjer KM, Blahnik RJ, Holzenthal RW (2002) Phylogeny of caddisflies (Insecta, Trichoptera). Zool Scripta 31:83–91CrossRefGoogle Scholar
  22. Kluge NJ (2004) Larval/pupal leg transformation and a new diagnosis for the taxon Metabola Bunneister, 1832 = Oligoneoptera Martynov, 1923. Russ Entomol J 13:189–229Google Scholar
  23. Kristensen NP (1999) The non-glossatan moths. In: Kristensen NP (ed) Handbook of Zoologie IV: Arthropoda: Insecta, part 35 Lepidoptera, Moths and Butterflies. vol 1: Evolution, Systematics, and Biogeography. De Gruyter, BerlinGoogle Scholar
  24. Kubiak M, Beckmann F, Friedrich F (2015) The adult head of the annulipalpian caddisfly Philopotamus ludificatus McLachlan, 1878 (Insecta: Trichoptera: Philopotamidae), mouthpart homology and phylogenetic implications. Arthropod Syst Phylogeny 73:351–384Google Scholar
  25. Lorenz RE (1961) Biologie und Morphologie von Micropterix calthella (L.). Dtsch Entomol Z 8:1–23Google Scholar
  26. Malicky H (2001) Notes on the taxonomy of Rhadicolepus, Ptilocolepus and Pseudoneureclipsis. Braueria 28:19–20Google Scholar
  27. Malicky H (2004) Atlas of European Trichoptera. 2nd edn. Springer, DordrechtGoogle Scholar
  28. Malicky H (2005) Ein kommentiertes Verzeichnis der Köcherfliegen (Trichoptera) Europas und des Mediterrangebiets. Linzer biologische Beiträge 37:533–596Google Scholar
  29. Malm T, Johanson KA, Wahlberg N (2013) The evolutionary history of Trichoptera (Insecta): a case of successful adaptation to life in freshwater. Syst Entomol 38:459–473CrossRefGoogle Scholar
  30. Michels J, Gorb SN (2012) Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J Microsc 245:1–16CrossRefPubMedGoogle Scholar
  31. New TR, Theischinger G (1993) Adult morphology. In: New TR, Theischinger G (eds) Part 33 Megaloptera (Alderflies, Dobsonflies). de Gryter, Berlin, pp 26–33CrossRefGoogle Scholar
  32. Pilgrim RLC (1972) The aquatic larva and the pupa of Choristella philpotti Tillyard, 1917 (Mecoptera: Nannochoristidae). Pac Insects 14:151–168Google Scholar
  33. Pohl H (2010) A scanning electron microscopy specimen holder for viewing different angles of a single specimen. Microsc Res Tech 73:1073–1076CrossRefPubMedGoogle Scholar
  34. Ross HH (1956) Evolution and classification of the mountain Caddisflies. University of Illinois Press, UrbanaGoogle Scholar
  35. Ross HH (1967) The evolution and past dispersal of the Trichoptera. Annu Rev Entomol 12:169–206CrossRefGoogle Scholar
  36. Saalfeld S, Fetter R, Cardona A, Tomancak P (2012) Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat Methods 9:717–720CrossRefPubMedGoogle Scholar
  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  38. Schuhmacher H (1970) Untersuchungen zur Taxonomie, Biologie und Ökologie einiger Köcherfliegenarten der Gattung Hydropsyche Pict. (Insecta, Trichoptera). Int Rev Hydrobiol 55:511–557CrossRefGoogle Scholar
  39. Setty LR (1940) Biology and morphology of some North American Bittacidae (Order Mecoptera). Am Midl Nat 23:257–353CrossRefGoogle Scholar
  40. Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill Book Company, New York, LondonGoogle Scholar
  41. Solem JO (1976) Studies on the behaviour of adults of Phryganea bipunctata and Agrypnia obsoleta (Trichoptera). Nor J Entomol 23:23–28Google Scholar
  42. Thienemann A (1904) Ptilocolepus granulatus eine Übergangsform von den Rhyacophiliden zu den Hydroptiliden. Allg Z Entomol 23/24:418–424 (437–441) Google Scholar
  43. Thienemann A (1905) Biologie der Trichopteren-Puppe. Dissertation, Philosophische Fakultät, Universität GreifswaldGoogle Scholar
  44. Tobias W (1971) Der zeitliche Ablauf des Schlüpfens bei Köcherfliegen. Nat Mus 101:155–166Google Scholar
  45. Ulmer G (1903) Über das Vorkommen von Krallen an den Beinen einiger Trichopterenpuppen. Allg Z Entomol 8:261–265Google Scholar
  46. Wells A (1985) Larvae and pupae of Australian Hydroptilidae (Trichoptera), with observations on general biology and relationships. Austr J Zool Suppl 113:1–69Google Scholar
  47. Wesenberg-Lund C (1910) Über die Biologie von Glyphotaelius punctatolineatus Retz. nebst Bemerkungen über das freilebende Puppenstadium der Wasserinsekten. Int Rev Hydrobiol 3:93–114CrossRefGoogle Scholar
  48. Wichard W, Arens W, Eisenbeis G (1995) Altlas zur Biologie der Wasserinsekten. Gustav Fischer Verlag, StuttgartGoogle Scholar
  49. Wiggins GB (2004) Caddisflies. The underwater architects. University of Toronto Press, Toronto, BuffaloGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biozentrum GrindelUniversität HamburgHamburgGermany
  2. 2.Zoologisches Museum, Centrum für NaturkundeUniversität HamburgHamburgGermany

Personalised recommendations