Skip to main content
Log in

Comparative anatomy of pupal tarsi in caddisflies (Insecta: Trichoptera) with focus on the claw system

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The decticous pupa of Trichoptera is an unusual case, as the larvae pupate in a silk cocoon under water. This leads to the problem that the pharate adult (i.e. the imago prior to eclosion within the pupal exuviae) has to cut through the cocoon and actively swim to land. To solve the latter problem, pupal legs are specifically modified. The midlegs are usually equipped with rows of hairs and are used as swimming legs to bring the insects to the water surface or the shore. Some species shed the pupal exuviae while floating on the water surface, others after crawling on stones or plants. It was assumed that this is assisted by attachment structures, especially the pupal claws. Pupal claws can differ distinctly in trichopteran lineages. However, detailed information on this character system is very limited in the literature. Furthermore, the functional principle of the pupal claw system is not well understood. Here, we present detailed data on the pupal tarsus of 15 species (14 families) using confocal laser scanning microscopy and histology. The results are discussed in terms of functional morphology, relations to larval habitat, pupal behavior, and phylogenetic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnard KH (1931) The Cape alder-flies (Neuroptera, Megaloptera). Trans Roy Soc South Afr 19:169–184

    Article  Google Scholar 

  • Betten C (1934) The caddis flies or Trichoptera of New York State. NY State Mus Bull 292:1–116

    Google Scholar 

  • Beutel RG, Friedrich F, Yang XK, Ge S (2014) Insect morphology and phylogeny. De Gruyter, Berlin

    Google Scholar 

  • Byers GW (1963) The life history of Panorpa nuptialis (Mecoptera: Panorpidae). Ann Entomol Soc Am 56:142–149

    Article  Google Scholar 

  • Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8:1–17

    Article  CAS  Google Scholar 

  • Cooper KW (1974) Sexual biology, chromosomes, development, life histories and parasites of Boreus., especially of B. notoperates. A Southern California Boreus. II. (Mecoptera: Boreidae). Psyche 81:84–120

    Article  Google Scholar 

  • Crowson RA (1981) The biology of the Coleoptera. Academic Press, London

    Google Scholar 

  • Currie GA (1932) Some notes on the biology and morphology of the immature stages of Harpobittacus tillyardi (Order Mecoptera). Proc Linn Soc NS Wales 57:116–122

    Google Scholar 

  • Deans AR, Mikó I, Wipfler B, Friedrich F (2012) Evolutionary phenomics and the emerging enlightenment of arthropod systematics. Invertebr Syst 26:323–330

    Article  Google Scholar 

  • Frania HE, Wiggins GB (1997) Analysis of morphological and behavioural evidence for the phylogeny and higher classification of Trichoptera (Insecta). R Ont Mus Life Sci Contrib 160:1–67

    Google Scholar 

  • Friedrich F, Matsumura Y, Pohl H, Bai M, Hörnschemeyer T, Beutel RG (2014) Insect morphology in the age of phylogenomics: innovative techniques and its future role in systematics. Entomol Sci 17:1–24

    Article  Google Scholar 

  • González MA, Vieira-Lanero R, Cobo F (2000) The immature stages of Ptilocolepus extensus McLachlan, 1884 (Trichoptera: Hydroptilidae: Ptilocolepinae) with notes on biology. Aquat Insects 22:27–38

    Article  Google Scholar 

  • Hamilton SW (1985) The larva and pupa of Beraea gorteba Ross (Trichoptera: Beraeidae). Proc Entomol Soc Wash 87:783–789

    Google Scholar 

  • Hickin NE (1967) Caddis Larvae. Larvae of the British Trichoptera. Hutchinson & Co. Ltd., London

    Google Scholar 

  • Hinton HE (1946) A new classification of insect pupae. Proc Zool Soc Lond 116:282–328

    Article  Google Scholar 

  • Hinton HE (1949) On the function, origin, and classification of pupae. Proc Trans S London Entomol Nat Hist Soc 1947–1948:111–154

    Google Scholar 

  • Holzenthal RW, Blahnik RJ, Prather AL, Kjer KM (2007) Order Trichoptera Kirby, 1813 (Insecta). Caddisflies Zootaxa 1668:639–698

    Google Scholar 

  • Holzenthal RW, Morse JC, Kjer KM (2011) Order Trichoptera Kirby, 1813. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148. Magnolia Press, Auckland, pp 209–211

    Google Scholar 

  • Ivanov VD (2002) Contribution to the Trichoptera phylogeny: new family tree with considerations of Trichoptera–Lepidoptera relations. Nov Suppl Entomol 15:277–292

    Google Scholar 

  • Kaltenbach A (1978) Morphologie und Physiologie. In: Kaltenbach A (ed) Handbook of zoology IV: arthropoda: Insecta, part 28 Mecoptera (Schnabelhafte, Schnabelfliegen). Gruyter, Berlin, pp 25–86

  • Kjer KM, Blahnik RJ, Holzenthal RW (2002) Phylogeny of caddisflies (Insecta, Trichoptera). Zool Scripta 31:83–91

    Article  Google Scholar 

  • Kluge NJ (2004) Larval/pupal leg transformation and a new diagnosis for the taxon Metabola Bunneister, 1832 = Oligoneoptera Martynov, 1923. Russ Entomol J 13:189–229

    Google Scholar 

  • Kristensen NP (1999) The non-glossatan moths. In: Kristensen NP (ed) Handbook of Zoologie IV: Arthropoda: Insecta, part 35 Lepidoptera, Moths and Butterflies. vol 1: Evolution, Systematics, and Biogeography. De Gruyter, Berlin

    Google Scholar 

  • Kubiak M, Beckmann F, Friedrich F (2015) The adult head of the annulipalpian caddisfly Philopotamus ludificatus McLachlan, 1878 (Insecta: Trichoptera: Philopotamidae), mouthpart homology and phylogenetic implications. Arthropod Syst Phylogeny 73:351–384

    Google Scholar 

  • Lorenz RE (1961) Biologie und Morphologie von Micropterix calthella (L.). Dtsch Entomol Z 8:1–23

    Google Scholar 

  • Malicky H (2001) Notes on the taxonomy of Rhadicolepus, Ptilocolepus and Pseudoneureclipsis. Braueria 28:19–20

    Google Scholar 

  • Malicky H (2004) Atlas of European Trichoptera. 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Malicky H (2005) Ein kommentiertes Verzeichnis der Köcherfliegen (Trichoptera) Europas und des Mediterrangebiets. Linzer biologische Beiträge 37:533–596

    Google Scholar 

  • Malm T, Johanson KA, Wahlberg N (2013) The evolutionary history of Trichoptera (Insecta): a case of successful adaptation to life in freshwater. Syst Entomol 38:459–473

    Article  Google Scholar 

  • Michels J, Gorb SN (2012) Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J Microsc 245:1–16

    Article  PubMed  CAS  Google Scholar 

  • New TR, Theischinger G (1993) Adult morphology. In: New TR, Theischinger G (eds) Part 33 Megaloptera (Alderflies, Dobsonflies). de Gryter, Berlin, pp 26–33

    Chapter  Google Scholar 

  • Pilgrim RLC (1972) The aquatic larva and the pupa of Choristella philpotti Tillyard, 1917 (Mecoptera: Nannochoristidae). Pac Insects 14:151–168

    Google Scholar 

  • Pohl H (2010) A scanning electron microscopy specimen holder for viewing different angles of a single specimen. Microsc Res Tech 73:1073–1076

    Article  PubMed  Google Scholar 

  • Ross HH (1956) Evolution and classification of the mountain Caddisflies. University of Illinois Press, Urbana

    Google Scholar 

  • Ross HH (1967) The evolution and past dispersal of the Trichoptera. Annu Rev Entomol 12:169–206

    Article  Google Scholar 

  • Saalfeld S, Fetter R, Cardona A, Tomancak P (2012) Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat Methods 9:717–720

    Article  PubMed  CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher H (1970) Untersuchungen zur Taxonomie, Biologie und Ökologie einiger Köcherfliegenarten der Gattung Hydropsyche Pict. (Insecta, Trichoptera). Int Rev Hydrobiol 55:511–557

    Article  Google Scholar 

  • Setty LR (1940) Biology and morphology of some North American Bittacidae (Order Mecoptera). Am Midl Nat 23:257–353

    Article  Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill Book Company, New York, London

    Google Scholar 

  • Solem JO (1976) Studies on the behaviour of adults of Phryganea bipunctata and Agrypnia obsoleta (Trichoptera). Nor J Entomol 23:23–28

    Google Scholar 

  • Thienemann A (1904) Ptilocolepus granulatus eine Übergangsform von den Rhyacophiliden zu den Hydroptiliden. Allg Z Entomol 23/24:418–424 (437–441)

    Google Scholar 

  • Thienemann A (1905) Biologie der Trichopteren-Puppe. Dissertation, Philosophische Fakultät, Universität Greifswald

  • Tobias W (1971) Der zeitliche Ablauf des Schlüpfens bei Köcherfliegen. Nat Mus 101:155–166

    Google Scholar 

  • Ulmer G (1903) Über das Vorkommen von Krallen an den Beinen einiger Trichopterenpuppen. Allg Z Entomol 8:261–265

    Google Scholar 

  • Wells A (1985) Larvae and pupae of Australian Hydroptilidae (Trichoptera), with observations on general biology and relationships. Austr J Zool Suppl 113:1–69

    Google Scholar 

  • Wesenberg-Lund C (1910) Über die Biologie von Glyphotaelius punctatolineatus Retz. nebst Bemerkungen über das freilebende Puppenstadium der Wasserinsekten. Int Rev Hydrobiol 3:93–114

    Article  Google Scholar 

  • Wichard W, Arens W, Eisenbeis G (1995) Altlas zur Biologie der Wasserinsekten. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Wiggins GB (2004) Caddisflies. The underwater architects. University of Toronto Press, Toronto, Buffalo

    Google Scholar 

Download references

Acknowledgements

The study was financed by the German Science Foundation (DFG, FR 3062/2-1). This is gratefully acknowledged. We thank Alice Wells (Australian National Insect Collection, CSIRO, Canberra), Matthias Gorka (Büro für GewässerÖkologie, Karlsruhe), and Hans Pohl (FSU Jena) for providing valuable specimens. Furthermore, we thank Sabine Gaude (Universität Hamburg) for preparing histological section of high quality and Carina Edel (Universität Hamburg) for helping with the visualization of 3D data. Comments on the manuscript by two anonymous reviewers are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Friedrich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or living animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, F., Kubiak, M. Comparative anatomy of pupal tarsi in caddisflies (Insecta: Trichoptera) with focus on the claw system. Zoomorphology 137, 305–314 (2018). https://doi.org/10.1007/s00435-018-0398-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-018-0398-7

Keywords

Navigation