Advertisement

Zoomorphology

, Volume 137, Issue 2, pp 249–256 | Cite as

Comparative allometric variation in intertidal chitons (Polyplacophora: Chitonidae)

  • Christian M. Ibáñez
  • Roger D. Sepúlveda
  • Julia D. Sigwart
Original paper

Abstract

Allometry involves the study of the relationship between size and shape of an individual, and in particular, the manner in which shape depends on size. Animals with multi-element skeletons may have differing growth allometries in different parts of the body. Chitons, for example, have eight overlapping shell plates or valves of three distinct types: head (one plate), intermediate (six plates), and tail (one plate). The overall chiton body is ellipsoidal and different species differ in their eccentricity. The aim of this study was to examine overall allometry in size and shape over adult ontogeny, and how these patterns vary among four closely related species of intertidal chitons from Southeastern Pacific Ocean. For each specimen (n = 407), measurements were taken of total body length and the exposed anterio-posterior lengths of the eight shell plates. Multivariate allometry was evaluated by means of a principal component analysis for each species separately, and for the total. The results showed differential allometric growth of specific skeletal elements, which varied among species; however, there was no clear evidence for specific differentiable growth stages. The overall trend among the combined species was for weakly positive allometry of shell plate widths, but isometric growth of total length and width; thus, the lateral proportion of the animal occupied by shell increases over growth and conversely “thinner looking” girdles may be generally indicative of older animals.

Keywords

Allometry Shell shape Growth Polyplacophorans Morphometry Southeastern Pacific 

Notes

Acknowledgements

This study was financially supported by FONDECYT #1130266 Grant “Evolutionary biogeography of the Southeastern Pacific polyplacophorans” to C.M. Ibáñez. We are grateful to F. Alfonso, A. Cifuentes, S. Curaz, A. Fabres, A. Navarrete, M.C. Pardo-Gandarillas, V. Sanhueza, J. Salazar, C. Tobar and G. Torretti for their assistance in field and laboratory work.

Compliance with ethical standards

Ethical standards

This research was approved by the Universidad Andres Bello ethical committee and the Chilean government through FONDECYT. The manuscript has not been submitted to more than one journal for simultaneous consideration nor has it been published previously.

Conflict of interest

The authors declare that they have no conflict of interest with any other projects, researchers or organizations, commercial or otherwise.

References

  1. Araya JF, Araya ME (2015) The shallow-water chitons (Mollusca, Polyplacophora) of Caldera, Region of Atacama, northern Chile. ‎Zoosyst Evol 91:45–58CrossRefGoogle Scholar
  2. Avaca MS, Narvarte M, Martín P, van der Molen S (2013) Shell shape variation in the Nassariid Buccinanops globulosus in northern Patagonia. Helgol Mar Res 67:567–577CrossRefGoogle Scholar
  3. Avila-Poveda OH, Abadia-Chanona QY (2013) Emergence, development, and maturity of the gonad of two species of chitons ‘‘sea cockroach’’ (Mollusca: Polyplacophora) through the early life stages. PLoS One 8:e69785CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barnes DW (1824) Descriptions of five species of Chiton. Am J Sci Art 7:69–71Google Scholar
  5. Baxter JM (1982) Allometric and morphological variations of whole animal and valve dimensions in the chiton Lepidochitona cinereus (L.) (Mollusca: Polyplacophora). J Molluscan Stud 48:275–282CrossRefGoogle Scholar
  6. Baxter JM, Jones AM (1986) Allometric and morphological characteristics of Tonicella marmorea (Fabricius, 1780) populations (Mollusca: Polyplacophora: Ischnochitonidae). Zool J Linn Soc 88:167–177CrossRefGoogle Scholar
  7. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge, p 435Google Scholar
  8. Brito MJ (2017). Ecología reproductiva en tres especies de Chiton Linnaeus, 1758 (Mollusca: Polyplacophora) en Coquimbo, Chile. Master Degree Thesis. Universidad Católica de la Santísima Concepción, Chile, pp 76Google Scholar
  9. Conde-Padín P, Grahame JW, Rolán-Alvarez E (2007) Detecting shape differences in species of the Littorina saxatilis complex by morphometric analysis. J Molluscan Stud 73:147–154CrossRefGoogle Scholar
  10. Connors MJ, Ehrlich H, Hog M, Godeffroy C, Araya S, Kallai I, Gazit D, Boyce M, Ortiz C (2012) Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. J Struct Biol 177:314–328CrossRefPubMedGoogle Scholar
  11. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York, p 347Google Scholar
  12. Economo EP, Kerkhoff AJ, Enquist BJ (2005) Allometric growth, life-history invariants and population energetic. Ecol Lett 8:353–360CrossRefGoogle Scholar
  13. Eernisse DJ (2007) Chitons. In: Denny MW, Gaines SD (eds) Encyclopedia of tidepools and rocky shores. University of California Press, Berkeley, pp 127–133Google Scholar
  14. Emam WM, Ismail NS (1993) Intraspecific variation in the morphometrics of Acanthopleura haddoni (Mollusca: Polyplacophora) from the Arabian Gulf and Gulf of Oman. Zool Middle East 8:45–52CrossRefGoogle Scholar
  15. Flores-Campaña LM, Arzola-González JF, De León-Herrera R (2012) Body size structure, biometric relationships and density of Chiton albolineatus (Mollusca: Polyplacophora) on the intertidal rocky zone of three islands of Mazatlan Bay, SE of the Gulf of California. Rev Biol Mar Oceanogr 47:203–211CrossRefGoogle Scholar
  16. Frembly J (1827) A description of several new species of chitones, found on the coast of Chili, in 1825; with a few remarks on the method of taking and preserving them. Zool J 3:193–205Google Scholar
  17. Gayon J (2000) History of the concept of allometry. Am Zool 40:748–758Google Scholar
  18. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, London, p 1433Google Scholar
  19. Hollander J, Adams DC, Johannesson K (2006) Evolution of adaptation through allometric shifts in a marine snail. Evolution 60:2490–2497CrossRefPubMedGoogle Scholar
  20. Huxley JS (1932) Problems of relative growth. Methuen, Co. LTD., London, p 276Google Scholar
  21. Kemp P, Bertness M (1984) Snail shape and growth rates: Evidence for plastic shell allometry in Littorina littorea. Proc Natl Acad Sci USA 81:811–813CrossRefPubMedPubMedCentralGoogle Scholar
  22. Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) Advances in morphometrics. Plenum Press, New York, pp 23–49CrossRefGoogle Scholar
  23. Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79–123CrossRefPubMedGoogle Scholar
  24. Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635CrossRefPubMedGoogle Scholar
  25. Mosimann JE (1970) Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J Am Stat Assoc 65:930–945CrossRefGoogle Scholar
  26. Nikolioudakis N, Koumoundouros G, Kiparissis S, Somarakis S (2010) Defining length-at-metamorphosis in fishes: a multi-character approach. Mar Biol 157:991–1001CrossRefGoogle Scholar
  27. Otaíza RD, Santelices B (1985) Vertical distribution of chitons (Mollusca: Polyplacophora) in the rocky intertidal zone of central Chile. J Exp Mar Biol Ecol 86:229–240CrossRefGoogle Scholar
  28. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 11 June 2014
  29. Rolán E, Guerra-Varela J, Colson I, Hughes RN, Rolán-Alvarez E (2004) Morphological and genetic analysis of two sympatric morphs of the dogwhelk Nucella lapillus (Gastropoda: Muricidae) from Galicia (Northwestern Spain). J Molluscan Stud 70:179–185CrossRefGoogle Scholar
  30. Saad AEA (1997) Morphometric studies on the rock chiton Acanthopleura spiniger (Mollusca: Polyplacophora) from the northwestern region of the Red Sea. Indian J Mar Sci 26:49–52Google Scholar
  31. Schwabe E (2010) Illustrated summary of chiton terminology (Mollusca, Polyplacophora). Spixiana 33:171–194Google Scholar
  32. Sepúlveda RD, Ibáñez CM (2012) Clinal variation in the shell morphology of intertidal snail Acanthina monodon in the Southeastern Pacific Ocean. Mar Biol Res 8:363–372CrossRefGoogle Scholar
  33. Shea BT (1985) Bivariate and multivariate growth allometry: statistical and biological considerations. J Zool Lond 206:367–390CrossRefGoogle Scholar
  34. Sigwart JD (2009) Morphological cladistic analysis as a model for character evaluation in primitive living chitons (Polyplacophora, Lepidopleurina). Am Malacol Bull 27:95–104CrossRefGoogle Scholar
  35. Sigwart JD, Green PA, Crofts SB (2015) Functional morphology in chitons (Mollusca, Polyplacophora): influences of environment and ocean acidification. Mar Biol 162:2257–2264CrossRefGoogle Scholar
  36. Sirenko B (2006) A new outlook on the system of chitons (Mollusca: Polyplacophora). Venus 65:27–49Google Scholar
  37. Sotil GE (2004) Variación estacional de la madurez gonadal y oogénesis de Chiton cumingsii Frembly, 1827 de Bahía Ancón, Lima Perú. Biology Thesis. Universidad Nacional Mayor de San Marcos. Lima, Perú, pp 63Google Scholar
  38. Vélez-Arellano N, Shibayama M, Ortiz-Ordóñez E, Silva-Olivares A, Arellano-Martínez M, García-Domínguez F (2014) Histological description of oogenesis in Chiton virgulatus (Mollusca: Polyplacophora). Int J Morphol 32:608–613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
  2. 2.Facultad de Ciencias, Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
  3. 3.Research Centre, South American Research Group on Coastal Ecosystems (SARCE)CaracasVenezuela
  4. 4.University of California BerkeleyBerkeleyUSA
  5. 5.Marine LaboratoryQueen’s University BelfastPortaferryIreland

Personalised recommendations