Medical Microbiology and Immunology

, Volume 207, Issue 2, pp 151–166 | Cite as

Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice

  • Akram Abouie Mehrizi
  • Niloufar Rezvani
  • Sedigheh Zakeri
  • Atefeh Gholami
  • Laleh Babaeekhou
Original Investigation


Malaria vaccine development has been confronted with various challenges such as poor immunogenicity of malaria vaccine candidate antigens, which is considered as the main challenge. However, this problem can be managed using appropriate formulations of antigens and adjuvants. Poly(I:C) is a potent Th1 inducer and a human compatible adjuvant capable of stimulating both B- and T-cell immunity. Plasmodium falciparum merozoite surface protein 142 (PfMSP-142) is a promising vaccine candidate for blood stage of malaria that has faced several difficulties in clinical trials, mainly due to improper adjuvants. Therefore, in the current study, poly(I:C), as a potent Th1 inducer adjuvant, was evaluated to improve the immunogenicity of recombinant PfMSP-142, when compared to CFA/IFA, as reference adjuvant. Poly(I:C) produced high level and titers of anti-PfMSP-142 IgG antibodies in which was comparable to CFA/IFA adjuvant. In addition, PfMSP-142 formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-4 (23.9) and IgG2a/IgG1 (3.77) with more persistent, higher avidity, and titer of IgG2a relative to CFA/IFA, indicating a potent Th1 immune response. Poly(I:C) could also help to induce anti-PfMSP-142 antibodies with higher growth-inhibitory activity than CFA/IFA. Altogether, the results of the current study demonstrated that poly(I:C) is a potent adjuvant that can be appropriate for being used in PfMSP-142-based vaccine formulations.


Malaria vaccine Plasmodium falciparum MSP-1 Poly(I:C) adjuvant Growth-inhibitory antibody 



The authors thank to Mrs. M. Saffari for English editing the manuscript. This work was supported by a Grant (no. 765) from Pasteur Institute of Iran to A. A. Mehrizi.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal handling was in accordance with the ethical standards of the Laboratory Animal Science Department, Pasteur Institute of Iran.

Supplementary material

430_2018_535_MOESM1_ESM.pdf (52 kb)
Supplementary material 1 Supplementary Fig. A1 Analysis of purified rPfMSP-142 by using SDS-PAGE and western Blotting. a SDS-PAGE analysis of purified rPfMSP-142, Lane 1: purified rPfMSP-142, M: protein marker; b The confirmation of purified rPfMSP-142 using anti-His antibodies and also sera of P. falciparum-infected patients. Lane 1: anti-His antibody, Lane 2: pooled sera of P. falciparum-infected patients, Lane 3: pooled sera of P. vivax-infected patients, Lane 4: normal human sera (NHS) from healthy individuals outside malaria endemic areas. M: protein Marker (14.4–116 kDa, Fermentase, USA) (PDF 52 KB)


  1. 1.
  2. 2.
    World Health Organization (WHO) (2014) WHO updates on artemisinin resistance. WHO. Accessed 17 Nov 2014
  3. 3.
    World Health Organization (WHO) (2012) Global plan for insecticide resistance management in malaria vectors. World Health Organization, Geneva (2012) ( Accessed 15 Oct 2013
  4. 4.
    malERA Consultative Group on Vaccines (2011) A research agenda for malaria eradication: vaccines. PLoS Med 8(1):e1000398. CrossRefGoogle Scholar
  5. 5.
    Nussenzweig V, Nussenzweig RS (1986) Development of a sporozoite malaria vaccine. Am J Trop Med Hyg 35(4):678–688CrossRefPubMedGoogle Scholar
  6. 6.
    Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S (2015) Recent advances in recombinant protein-based malaria vaccines. Vaccine 33(52):7433–7443. CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Ansong D, Asante KP, Vekemans J, Owusu SK, Owusu R, Brobby NA, Dosoo D, Osei-Akoto A, Osei-Kwakye K, Asafo-Adjei E, Boahen KO, Sylverken J, Adjei G, Sambian D, Apanga S, Kayan K, Janssens MH, Lievens MJ, Olivier AC, Jongert E, Dubois P, Savarese BM, Cohen J, Antwi S, Greenwood BM, Evans JA, Agbenyega T, Moris PJ, Owusu-Agyei S (2011) T cell responses to the RTS,S/AS01(E) and RTS,S/AS02(D) malaria candidate vaccines administered according to different schedules to Ghanaian children. PLoS One 6(4):e18891. CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Lee S, Nguyen MT (2015) Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 15(2):51–57. CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Mata E, Salvador A, Igartua M, Hernández RM, Pedraz JL (2013) Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. Biomed Res Int 2013:282913. CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Garcon N, Leroux-Roels G, Cheng VF (2011) Vaccine adjuvants. Perspect Vaccinol 1:89–113CrossRefGoogle Scholar
  11. 11.
    Eng NF, Bhardwaj N, Mulligan R, Diaz-Mitoma F (2013) The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV™ review. Hum Vaccine Immunother 9(8):1661–1672. CrossRefGoogle Scholar
  12. 12.
    Taylor DN, Treanor JJ, Sheldon EA, Johnson C, UmLauf S, Song L, Kavita U, Liu G, Tussey L, Ozer K, Hofstaetter T, Shaw A (2012) Development of VAX128, a recombinant hemagglutinin (HA) influenza-flagellin fusion vaccine with improved safety and immune response. Vaccine 30(39):5761–5769. CrossRefPubMedGoogle Scholar
  13. 13.
    Turley CB, Rupp RE, Johnson C, Taylor DN, Wolfson J, Tussey L, Kavita U, Stanberry L, Shaw A (2011) Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) inhealthy adults. Vaccine 29(32):5145–5152. (Epub 2011 May 30) CrossRefPubMedGoogle Scholar
  14. 14.
    Hasegawa H, Ichinohe T, Ainai A, Tamura S, Kurata T (2009) Development of mucosal adjuvants for intranasal vaccine for H5N1 influenza viruses. Ther Clin Risk Manag 5(1):125–132CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccine 16(1):55–63. CrossRefGoogle Scholar
  16. 16.
    Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30(1):23–32. CrossRefPubMedGoogle Scholar
  17. 17.
    Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIX. Vaccine 27(33):4388–4401. CrossRefPubMedGoogle Scholar
  18. 18.
    Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, Tucker K, Waitumbi JN, Diggs C, Wittes J, Malkin E, Leach A, Soisson LA, Milman JB, Otieno L, Holland CA, Polhemus M, Remich SA, Ockenhouse CF, Cohen J, Ballou WR, Martin SK, Angov E, Stewart VA, Lyon JA, Heppner DG, Withers MR (2009) MSP-1 Malaria Vaccine Working Group. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One 4(3):e4708. CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Otsyula N, Angov E, Bergmann-Leitner E, Koech M, Khan F, Bennett J, Otieno L, Cummings J, Andagalu B, Tosh D, Waitumbi J, Richie N, Shi M, Miller L, Otieno W, Otieno GA, Ware L, House B, Godeaux O, Dubois MC, Ogutu B, Ballou WR, Soisson L, Diggs C, Cohen J, Polhemus M, Heppner DG Jr, Ockenhouse CF, Spring MD (2013) Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1(MSP1(42)) administered intramuscularly with adjuvant system AS01. Malar J 12:29. CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Ellis RD, Martin LB, Shaffer D, Long CA, Miura K, Fay MP, Narum DL, Zhu D, Mullen GE, Mahanty S, Miller LH, Durbin AP (2010) Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1(42)-C1/Alhydrogel with and without CPG 7909 in malaria naïve adults. PLoS One 5(1):e8787. CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev 60(7):805–812. CrossRefPubMedGoogle Scholar
  22. 22.
    Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, Salazar AM, Colonna M, Steinman RM (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1immunity with poly IC as adjuvant. J Exp Med 206(7):1589–1602. CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Forte G, Rega A, Morello S, Luciano A, Arra C, Pinto A, Sorrentino R (2012) Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. J Immunol 188(11):5357–5364. CrossRefPubMedGoogle Scholar
  24. 24.
    Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C, Salazar AM, Uberla K, Nieto K, Kleinschmidt J, Schulte R, Gissmann L, Müller M, Sacher A, Racz P, Steinman RM, Uguccioni M, Ignatius R (2009) Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoralimmune responses to human papillomavirus in rhesus macaques. PLoS Pathog 5(4):e1000373. CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Tewari K, Flynn BJ, Boscardin SB, Kastenmueller K, Salazar AM, Anderson CA, Soundarapandian V, Ahumada A, Keler T, Hoffman SL, Nussenzweig MC, Steinman RM, Seder RA (2010) Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates. Vaccine 28(45):7256–7266. CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Teixeira LH, Tararam CA, Lasaro MO, Camacho AG, Ersching J, Leal MT, Herrera S, Bruna-Romero O, Soares IS, Nussenzweig RS, Ertl HC, Nussenzweig V, Rodrigues MM (2014) Immunogenicity of a prime-boost vaccine containing the circumsporozoite proteins of Plasmodium vivax in rodents. Infect Immun 82(2):793–807. CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719CrossRefPubMedGoogle Scholar
  28. 28.
    Soutschek J, Akinc A, BramLage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178CrossRefPubMedGoogle Scholar
  29. 29.
    Naumann K, Wehner R, Schwarze A, Petzold C, Schmitz M, Rohayem J (2013) Activation of dendritic cells by the novel Toll-like receptor 3 agonist RGC100. Clin Dev Immunol 2013:283649. CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Diggs CL, Ballou WR, Miller LH (1993) The major merozoite surface protein as a malaria vaccine target. Parasitol Today 9(8):300–302CrossRefPubMedGoogle Scholar
  31. 31.
    Heppner DG Jr, Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon JA, Stewart VA, Dubois P, Lanar DE, Krzych U, Moris P, Angov E, Cummings JF, Leach A, Hall BT, Dutta S, Schwenk R, Hillier C, Barbosa A, Ware LA, Nair L, Darko CA, Withers MR, Ogutu B, Polhemus ME, Fukuda M, Pichyangkul S, Gettyacamin M, Diggs C, Soisson L, Milman J, Dubois MC, Garçon N, Tucker K, Wittes J, Plowe CV, Thera MA, Duombo OK, Pau MG, Goudsmit J, Ballou WR, Cohen J (2005) Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine 23(17–18):2243–2250CrossRefPubMedGoogle Scholar
  32. 32.
    Lyon JA, Angov E, Fay MP, Sullivan JS, Girourd AS, Robinson SJ, Bergmann-Leitner ES, Duncan EH, Darko CA, Collins WE, Long CA, Barnwell JW (2008) Protection induced by Plasmodium falciparum MSP1(42) is strain-specific, antigen and adjuvant dependent, and correlates with antibody responses. PLoS One 3(7):e2830. CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Burns JM Jr, Miura K, Sullivan J, Long CA, Barnwell JW (2016) Immunogenicity of a chimeric Plasmodium falciparum merozoite surface protein vaccine in Aotus monkeys. Malar J 15:159. CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Chang SP, Case SE, Gosnell WL, Hashimoto A, Kramer KJ, Tam LQ, Hashiro CQ, Nikaido CM, Gibson HL, Lee-Ng CT, Barr PJ, Yokota BT, Hut GS (1996) A recombinant baculovirus 42-kilodalton C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 protects Aotus monkeys against malaria. Infect Immun 64(1):253–261PubMedCentralPubMedGoogle Scholar
  35. 35.
    Keitel WA, Kester KE, Atmar RL, White AC, Bond NH, Holland CA, Krzych U, Palmer DR, Egan A, Diggs C, Ballou WR, Hall BF, Kaslow D (1999) Phase I trial of two recombinant vaccines containing the 19kd carboxy terminal fragment of Plasmodium falciparum merozoite surface protein 1 (msp-1(19)) and T helper epitopes of tetanus toxoid. Vaccine 18(5–6):531–539CrossRefPubMedGoogle Scholar
  36. 36.
    Chitnis CE, Mukherjee P, Mehta S, Yazdani SS, Dhawan S, Shakri AR, Bhardwaj R, Gupta PK, Hans D, Mazumdar S, Singh B, Kumar S, Pandey G, Parulekar V, Imbault N, Shivyogi P, Godbole G, Mohan K, Leroy O, Singh K, Chauhan VS (2015) Phase I clinical trial of a recombinant blood stage vaccine candidate for Plasmodium falciparum malaria based on MSP1 and EBA175. PLoS One 10(4):e0117820. CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Amante FH, Good MF (1997) Prolonged Th1-like response generated by a Plasmodium yoelii-specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunol 19(3):111–126CrossRefPubMedGoogle Scholar
  38. 38.
    Su Z, Stevenson MM (2000) Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun 68(8):4399–4406CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Smith NC, Favila-Castillo L, Monroy-Ostria A, Hirunpetcharat C, Good MF (1997) The spleen, IgG antibody subsets and immunity to Plasmodium berghei in rats. Immunol Cell Biol 75(3):318–323. CrossRefPubMedGoogle Scholar
  40. 40.
    Zakeri S, Mehrizi AA, Zoghi S, Djadid ND (2010) Non-variant specific antibody responses to the C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-1(19)) in Iranians exposed to unstable malaria transmission. Malar J 9:257. CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Mehrizi AA, Zakeri S, Salmanian AH, Sanati MH, Djadid ND (2008) Plasmodium falciparum: sequence analysis of the gene encoding the C-terminus region of the merozoite surface protein-1, a potential malaria vaccine antigen, in Iranian clinical isolates. Exp Parasitol 118(3):378–385CrossRefPubMedGoogle Scholar
  42. 42.
    Mehrizi AA, Zakeri S, Salmanian AH, Sanati MH, Djadid ND (2009) IgG subclasses pattern and high-avidity antibody to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in an unstable hypoendemic region in Iran. Acta Trop 112(1):1–7. CrossRefPubMedGoogle Scholar
  43. 43.
    Mehrizi AA, Zakeri S, Rafati S, Salmanian AH, Djadid ND (2011) Immune responses elicited by co-immunization of Plasmodium vivax and P. falciparum MSP-1 using prime-boost immunization strategies. Parasite Immunol 33(11):594–608. CrossRefPubMedGoogle Scholar
  44. 44.
    Miura K, Orcutt AC, Muratova OV, Miller LH, Saul A, Long CA (2008) Development and characterization of a standardized ELISA including a reference serum on eachplate to detect antibodies induced by experimental malaria vaccines. Vaccine 26(2):193–200. CrossRefPubMedGoogle Scholar
  45. 45.
    Hedman K, Lappalainen M, Seppäiä I, Mäkelä O (1989) Recent primary toxoplasma infection indicated by a low avidity of specific IgG. J Infect Dis 159(4):736–740CrossRefPubMedGoogle Scholar
  46. 46.
    Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675CrossRefPubMedGoogle Scholar
  47. 47.
    Makler MT, Hinrichs DJ (1993) Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg 48(2):205–210CrossRefPubMedGoogle Scholar
  48. 48.
    Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs DJ (1993) Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48(6):739–741CrossRefPubMedGoogle Scholar
  49. 49.
    Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P (1990) Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 172(6):1633–1641CrossRefPubMedGoogle Scholar
  50. 50.
    Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P (1995) Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med 182(2):409–418CrossRefPubMedGoogle Scholar
  51. 51.
    Aucan C, Traoré Y, Tall F, Nacro B, Traoré-Leroux T, Fumoux F, Rihet P (2000) High immunoglobulin G2 (IgG2) and low IgG4 levels are associated with human resistance to Plasmodium falciparum malaria. Infect Immun 68(3):1252–1258CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Tebo AE, Kremsner PG, Luty AJ (2001) Plasmodium falciparum: a major role for IgG3 in antibody-dependent monocyte-mediated cellular inhibition of parasite growth in vitro. Exp Parasitol 98(1):20–28CrossRefPubMedGoogle Scholar
  53. 53.
    Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F (2001) Growth of Plasmodium falciparum induces stage-dependent haemichrome formation, oxidative aggregation of band 3, membrane deposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br J Haematol 113(2):492–499CrossRefPubMedGoogle Scholar
  54. 54.
    Blackman MJ, Heidrich H-G, Donachie S, McBride JS, Holder AA (1990) A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibitory antibodies. J Exp Med 172:379CrossRefPubMedGoogle Scholar
  55. 55.
    Blackman MJ, Scott-Finnigan TJ, Shai S, Holder AA (1994) Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. J Exp Med 180(1):389–393CrossRefPubMedGoogle Scholar
  56. 56.
    Hirunpetcharat C, Stanisic D, Liu XQ, Vadolas J, Strugnell RA, Lee R, Miller LH, Kaslow DC, Good MF (1998) Intranasal immunization with yeast-expressed 19 kD carboxyl-terminal fragment of Plasmodium yoelii merozoite surface protein-1 (yMSP119) induces protective immunity to blood stage malaria infection in mice. Parasite Immunol 20(9):413–420CrossRefPubMedGoogle Scholar
  57. 57.
    Hirunpetcharat C, Tian JH, Kaslow DC, van Rooijen N, Kumar S, Berzofsky JA, Miller LH, Good MF (1997) Complete protective immunity induced in mice by immunization with the 19-kilodalton carboxyl-terminal fragment of the merozoite surface protein-1 (MSP1[19]) of Plasmodium yoelii expressed in Saccharomyces cerevisiae: correlation of protection with antigen-specific antibody titer, but not with effector CD4+ T cells. J Immunol 159(7):3400–3411PubMedGoogle Scholar
  58. 58.
    Siddiqui WA, Tam LQ, Kramer KJ, Hui GS, Case SE, Yamaga KM, Chang SP, Chan EB, Kan SC (1987) Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci USA 84(9):3014–3018CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Pusic K, Xu H, Stridiron A, Aguilar Z, Wang A, Hui G (2011) Blood stage merozoite surface protein conjugated to nanoparticles induce potent parasite inhibitory antibodies. Vaccine 29(48):8898–8908. CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Hui G, Choe D, Hashimoto C (2008) Biological activities of anti-merozoite surface protein-1 antibodies induced by adjuvant-assisted immunizations in mice with different immune gene knockouts. Clin Vaccine Immunol 15(8):1145–1150. CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14(4):461–470CrossRefPubMedGoogle Scholar
  62. 62.
    Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U, Tough DF (2006) Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol 176(4):2074–2078CrossRefPubMedGoogle Scholar
  63. 63.
    Spencer Valero LM, Ogun SA, Fleck SL, Ling IT, Scott-Finnigan TJ, Blackman MJ, Holder AA (1998) Passive immunization with antibodies against three distinct epitopes on Plasmodium yoelii merozoite surface protein 1 suppresses parasitemia. Infect Immun 66(8):3925–3930PubMedCentralPubMedGoogle Scholar
  64. 64.
    Matsumoto S, Yukitake H, Kanbara H, Yamada H, Kitamura A, Yamada T (2000) Mycobacterium bovis bacillus calmette-guérin induces protective immunity against infection by Plasmodium yoelii at blood-stage depending on shifting immunity toward Th1 type and inducing protective IgG2a after the parasite infection. Vaccine 19(7–8):779–787CrossRefPubMedGoogle Scholar
  65. 65.
    Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512. CrossRefPubMedGoogle Scholar
  66. 66.
    Neuberger MS, Rajewsky K (1981) Activation of mouse complement by monoclonal mouse antibodies. Eur J Immunol 11:1012–1016CrossRefPubMedGoogle Scholar
  67. 67.
    Ferreira MU, Kimura EA, De Souza JM, Katzin AM (1996) The isotype composition and avidity of naturally acquired anti-Plasmodium falciparum antibodies: differential patterns in clinically immune Africans and Amazonian patients. Am J Trop Med Hyg 55(3):315–323CrossRefPubMedGoogle Scholar
  68. 68.
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK (2001) Visualizing the generation of memory CD4 T cells in the whole body. Nature 410(6824):101–105. CrossRefPubMedGoogle Scholar
  69. 69.
    Mitchell TC, Hildeman D, Kedl RM, Teague TK, Schaefer BC, White J, Zhu Y, Kappler J, Marrack P (2001) Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nat Immunol 2(5):397–402. CrossRefPubMedGoogle Scholar
  70. 70.
    Hui GS, Siddiqui WA (1987) Serum from Pf195 protected Aotus monkeys inhibit Plasmodium falciparum growth in vitro. Exp Parasitol 64(3):519–522CrossRefPubMedGoogle Scholar
  71. 71.
    Singh S, Miura K, Zhou H, Muratova O, Keegan B, Miles A, Martin LB, Saul AJ, Miller LH, Long CA (2006) Immunity to recombinant Plasmodium falciparum merozoite surface protein 1 (MSP1): protection in Aotus nancymai monkeys strongly correlates with anti-MSP1 antibody titer and in vitro parasite-inhibitory activity. Infect Immun 74(8):4573–4580. CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Adame-Gallegos JR, Shi J, McIntosh RS, Pleass RJ (2012) The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19)). Exp Parasitol 130(4):384–393. CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Akram Abouie Mehrizi
    • 1
  • Niloufar Rezvani
    • 1
    • 2
  • Sedigheh Zakeri
    • 1
  • Atefeh Gholami
    • 1
  • Laleh Babaeekhou
    • 2
  1. 1.Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
  2. 2.Department of BiologyIslamshahr Branch, Islamic Azad UniversityIslamshahrIran

Personalised recommendations