Spatial transformation abilities and their relation to later mathematics performance

Original Article

Abstract

Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children’s later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children’s mathematics performance at the beginning of their school career.

Notes

Acknowledgements

This research was supported by research grants from the Swiss National Science Foundation # PZ00P1_131866 and # PP00P1_150486. Special thanks go to Wenke Möhring, Nora S. Newcombe, Laurenz L. Meier, Siegfried Macho, Claudia M. Roebers, Sarah Loher, Marianne Röthlisberger, and Annik E. Voelke for helpful comments, and to Denise Baumeler, Joël E. Bayard, Leunora Fejza, Ines Holzmann, and Lisa Odermatt for their help with data collection.

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Procedures were approved by the Institutional Review Board of the University. The manuscript does not contain clinical studies or patient data.

Informed consent

Informed consent was obtained for all individual participants included in the study.

References

  1. Acredolo, L. P. (1978). Development of spatial orientation in infancy. Developmental Psychology, 14, 224–234.  https://doi.org/10.1037/0012-1649.14.3.224.CrossRefGoogle Scholar
  2. Arbuckle, J. L. (2013). IBM SPSS Amos 22 user’s guide. Crawfordville: Amos Development Corporation.Google Scholar
  3. Battista, M. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21, 47–60.  https://doi.org/10.2307/749456.CrossRefGoogle Scholar
  4. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031.  https://doi.org/10.1111/j.1467-8624.2008.01173.x.PubMedCrossRefGoogle Scholar
  5. Bruner, J. S., Olver, R. R., & Greenfield, P. M. (1966). Studies in cognitive growth. New York: Wiley.  https://doi.org/10.3102/00028312005001117.Google Scholar
  6. Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33, 205–228.  https://doi.org/10.1080/87565640801982312.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26, 269–309.  https://doi.org/10.1080/07370000802177177.CrossRefGoogle Scholar
  8. Casey, M. B., Nuttall, R. L., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in math college entrance test scores across diverse samples. Developmental Psychology, 31, 697–705.  https://doi.org/10.1037/0012-1649.31.4.697.CrossRefGoogle Scholar
  9. Chatterjee A. (2008). The neural organization of spatial thought and language. Seminars in Speech and Language, 29, 226–238.  https://doi.org/10.1055/s-0028-1082886 PubMedCrossRefGoogle Scholar
  10. Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15, 2–11.  https://doi.org/10.1080/15248372.2012.725186.CrossRefGoogle Scholar
  11. Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14, 133–148.  https://doi.org/10.1007/s10857-011-9173-0.CrossRefGoogle Scholar
  12. Cohen, C. A., & Hegarty, M. (2007). Sources of difficulty in imagining cross sections of 3D objects. In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp. 179–184). Cognitive Science Society, Austin, TX.Google Scholar
  13. Committeri, G., Galati, G., Paradis, A. L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: Different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16, 1517–1535.  https://doi.org/10.1162/0898929042568550.PubMedCrossRefGoogle Scholar
  14. Cooper, L. A., & Shepard, R. N. (1973). The time required to prepare for a rotated stimulus. Memory and Cognition, 1, 246–250.  https://doi.org/10.3758/bf03198104.CrossRefGoogle Scholar
  15. Creem, S. H., Downs, T. H., Wraga, M., Harrington, G. S., Proffitt, D. R., & Downs, J. H. III (2001). An fMRI study of imagined self-rotation. Cognitive, Affective and Behavioral Neuroscience, 1, 239–249.  https://doi.org/10.3758/CABN.1.3.239.PubMedCrossRefGoogle Scholar
  16. de Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21, 653–660.  https://doi.org/10.1177/0956797610366091.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.  https://doi.org/10.1016/0010-0277(92)90049-N.PubMedCrossRefGoogle Scholar
  18. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition , 1, 83–120.Google Scholar
  19. Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25–32.  https://doi.org/10.1016/s0160-2896(03)00061-8.CrossRefGoogle Scholar
  20. Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2007). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1–17.  https://doi.org/10.1016/j.jecp.2007.08.006.PubMedCrossRefGoogle Scholar
  21. Ekstrom, R. B. R., French, J. J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton NJ Educational Testing Service, 102, 117.  https://doi.org/10.1073/pnas.0506897102.Google Scholar
  22. Estes, D. (1998). Young children’s awareness of their mental activity: The case of mental rotation. Child Development, 69, 1345–1360.  https://doi.org/10.2307/1132270.PubMedCrossRefGoogle Scholar
  23. Flavell, J. H., Flavell, E. F., Green, F. L., & Wilcox, S. A. (1980). Young children’s knowledge about visual perception: Effect of observer’s distance from target on perceptual clarity of target. Developmental Psychology, 16, 10–12.  https://doi.org/10.1037/0012-1649.16.1.10.CrossRefGoogle Scholar
  24. Frick, A., Ferrara, K., & Newcombe, N. S. (2013). Using a touch screen paradigm to assess the development of mental rotation between 3½ and 5½ years of age. Cognitive Processing, 14, 117–127.  https://doi.org/10.1007/s10339-012-0534-0.PubMedCrossRefGoogle Scholar
  25. Frick, A., Hansen, M. A., & Newcombe, N. S. (2013). Development of mental rotation in 3- to 5-year-old children. Cognitive Development, 28, 386–399.  https://doi.org/10.1016/j.cogdev.2013.06.002.CrossRefGoogle Scholar
  26. Frick, A., & Möhring, W. (2013). Mental object rotation and motor development in 8- and 10-month-old infants. Journal of Experimental Child Psychology, 115, 708–720.  https://doi.org/10.1016/j.jecp.2013.04.001.PubMedCrossRefGoogle Scholar
  27. Frick, A., & Möhring, W. (2016). A matter of balance: Motor control is related to children’s spatial scaling and proportional reasoning skills. Frontiers in Psychology, 6, 2049.  https://doi.org/10.3389/fpsyg.2015.02049.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frick, A., Möhring, W., & Newcombe, N. S. (2014). Picturing perspectives: Development of perspective-taking abilities in 4- to 8-year-olds. Frontiers in Psychology, 5, 386.  https://doi.org/10.3389/fpsyg.2014.00386.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Frick, A., & Newcombe, N. S. (2012). Getting the big picture: Development of spatial scaling abilities. Cognitive Development, 27, 270–282.  https://doi.org/10.1016/j.cogdev.2012.05.004.CrossRefGoogle Scholar
  30. Frick, A., & Newcombe, N. S. (2015). Young children’s perception of diagrammatic representations. Spatial Cognition & Computation, 15, 227–245.  https://doi.org/10.1080/13875868.2015.1046988.CrossRefGoogle Scholar
  31. Frick, A., & Wang, S. (2014). Mental spatial transformations in 14- and 16-month-old infants: Effects of action and observational experience. Child Development, 85, 278–293.  https://doi.org/10.1111/cdev.12116.PubMedCrossRefGoogle Scholar
  32. Ganzeboom, H. B. G., De Graaf, P. M., Treiman, D. J., & De Leeuw, J. (1992). A standard international socio-economic index of occupational status. Social Science Research, 21, 1–56.  https://doi.org/10.1016/0049-089X(92)90017-B.CrossRefGoogle Scholar
  33. Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8, 211–215.  https://doi.org/10.2307/748522.CrossRefGoogle Scholar
  34. Guilford, J. P., & Zimmerman, W. S. (1948). The Guilford-Zimmerman aptitude survey. Journal of Applied Psychology, 32, 24–32.  https://doi.org/10.1037/h0063610.CrossRefGoogle Scholar
  35. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241.  https://doi.org/10.1037/a0027433.PubMedCrossRefGoogle Scholar
  36. Haffner, J., Baro, K., Parzer, P., & Resch, F. (2005). Heidelberger Rechentest (HRT 1–4). Göttingen: Hogrefe.Google Scholar
  37. Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. (2015). General and math-specific predictors of sixth-graders’ knowledge of fractions. Cognitive Development, 35, 34–49.  https://doi.org/10.1016/j.cogdev.2015.02.001.CrossRefGoogle Scholar
  38. Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4, 60–68.  https://doi.org/10.1016/j.tine.2015.05.001.CrossRefGoogle Scholar
  39. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684–689.  https://doi.org/10.1037/0022-0663.91.4.684.CrossRefGoogle Scholar
  40. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175–191.  https://doi.org/10.1016/j.intell.2003.12.001.CrossRefGoogle Scholar
  41. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge: Cambridge University Press.  https://doi.org/10.1017/CBO9780511610448.005.CrossRefGoogle Scholar
  42. Hespos, S. J., & Rochat, P. (1997). Dynamic mental representation in infancy. Cognition, 64, 153–188.  https://doi.org/10.1016/s0010-0277(97)00029-2.PubMedCrossRefGoogle Scholar
  43. Hicks, L. E. (1970). Some properties of ipsative, normative, and forced-choice normative measures. Psychological Bulletin, 74, 167–184.  https://doi.org/10.1037/h0029780.CrossRefGoogle Scholar
  44. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.  https://doi.org/10.1037//1082-989x.3.4.424.CrossRefGoogle Scholar
  45. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.  https://doi.org/10.1080/10705519909540118.CrossRefGoogle Scholar
  46. Huttenlocher, J., & Presson, C. C. (1973). Mental rotation and the perspective problem. Cognitive Psychology, 4, 277–299.  https://doi.org/10.1016/0010-0285(73)90015-7.CrossRefGoogle Scholar
  47. Huttenlocher, J., & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive Psychology, 11(79), 375–394.  https://doi.org/10.1016/0010-0285. 90017–3.PubMedCrossRefGoogle Scholar
  48. International Labour Office (Ed.). (1990). International standard classification of occupations. ISCO-1988. Geneva: International Labour Office.Google Scholar
  49. Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24, 1831–1836.  https://doi.org/10.1177/0956797613478615.PubMedCrossRefGoogle Scholar
  50. Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel & K. F. Wender (Eds.), Spatial cognition I—An interdisciplinary approach to representing and processing spatial knowledge (pp. 1–17). Berlin: Springer.  https://doi.org/10.1007/3-540-69342-4_1.Google Scholar
  51. Kosslyn, S. M. (1978). The representational-development hypothesis. In P. A. Ornstein (Ed.), Memory development in children (pp. 157–189). Hillsdale, NJ: Erlbaum.  https://doi.org/10.4324/9781315794266.Google Scholar
  52. Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549–579.  https://doi.org/10.1080/15326900701399897.PubMedCrossRefGoogle Scholar
  53. Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23, 77–94.  https://doi.org/10.1007/BF03173141.CrossRefGoogle Scholar
  54. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind bring mathematics into being. New York: Basic Books.Google Scholar
  55. Laski, E. V., Casey, B. M., Yu, Q., Dulaney, A., Heyman, M., & Dearing, E. (2013). Spatial skills as a predictor of first grade girls’ use of higher level arithmetic strategies. Learning and Individual Differences, 23, 123–130.  https://doi.org/10.1016/j.lindif.2012.08.001.CrossRefGoogle Scholar
  56. LeFevre, J. A., Lira, C. J., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S. L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4, 641.  https://doi.org/10.3389/fpsyg.2013.00641.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lennon, P. A. (2000). Improving students’ flexibility of closure while presenting biology content. American Biology Teacher, 62, 177–180. https://doi.org/10.1662/0002-7685(2000)062[0177:isfocw]2.0.co;2.CrossRefGoogle Scholar
  58. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.  https://doi.org/10.1037/0012-1649.35.4.940.PubMedCrossRefGoogle Scholar
  59. Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: A predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48, 530.  https://doi.org/10.1037/a0025913.PubMedCrossRefGoogle Scholar
  60. Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845.  https://doi.org/10.1111/j.1467-9280.2005.01623.x.PubMedCrossRefGoogle Scholar
  61. Liben, L. S., & Downs, R. M. (1992). Developing an understanding of graphic representations in children and adults: The case of GEO-graphics. Cognitive Development, 7, 331–349.  https://doi.org/10.1016/0885-2014(92)90020-R.CrossRefGoogle Scholar
  62. Liben, L. S., Moore, M. L., & Golbeck, S. L. (1982). Preschoolers’ knowledge of their classroom environment: Evidence from small-scale and life-size spatial tasks. Child Development, 53, 1275–1284.  https://doi.org/10.1111/j.1467-8624.1982.tb04166.x.PubMedCrossRefGoogle Scholar
  63. Liben, L. S., Myers, L. J., Christensen, A. E., & Bower, C. A. (2013). Environmental-scale map use in middle childhood: Links to spatial skills, strategies, and gender. Child Development, 84(6), 2047–2063.  https://doi.org/10.1111/cdev.12090.PubMedCrossRefGoogle Scholar
  64. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.  https://doi.org/10.2307/1130467.PubMedCrossRefGoogle Scholar
  65. Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature. Aptitude Research Project (Technical Report No. 8). Stanford, CA: Stanford University, School of Education. Google Scholar
  66. Lourenco, S. F., & Longo, M. R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. M. Brannon (Eds.), Space, time, and number in the brain: Searching for the foundations of mathematical thought (pp. 225–244). London: Elsevier.CrossRefGoogle Scholar
  67. Masangkay, Z. S., Mccluskey, K. A., Mcintyre, C. W., Sims-Knight, J., Vaughn, B. E., & Flavell, J. H. (1974). The early development of inferences about the visual percepts of others. Child Development, 45, 357–366.  https://doi.org/10.2307/1127956.PubMedCrossRefGoogle Scholar
  68. Maxwell, S., & Cole, D. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12, 23–44.  https://doi.org/10.1037/1082-989X.12.1.23.PubMedCrossRefGoogle Scholar
  69. Mayringer, H., & Wimmer, H. (2003). Salzburger Lese-Screening für die Klassenstufen 1–4 (SLS 1–4). Bern: Hans Huber.Google Scholar
  70. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86, 889–918.  https://doi.org/10.1037/0033-2909.86.5.889.PubMedCrossRefGoogle Scholar
  71. Mix, K. S., & Cheng, Y.-L. (2012). The relation between space and math: Developmental and educational implications. In J. B. Benson (Ed.), Advances in child development and behavior (Vol. 42, pp. 197–243). San Diego, CA: Academic Press.  https://doi.org/10.1016/B978-0-12-394388-0.00006-X.Google Scholar
  72. Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145, 1206–1227.  https://doi.org/10.1037/xge0000182.CrossRefGoogle Scholar
  73. Möhring, W., & Frick, A. (2013). Touching up mental rotation: Effects of manual experience on 6-month-old infants’ mental object rotation. Child Development, 84, 1554–1565.  https://doi.org/10.1111/cdev.12065.PubMedCrossRefGoogle Scholar
  74. Möhring, W., Newcombe, N. S., & Frick, A. (2014). Zooming in on spatial scaling: Preschool children and adults use mental transformations to scale spaces. Developmental Psychology, 50, 1614–1619.  https://doi.org/10.1037/a0035905.PubMedCrossRefGoogle Scholar
  75. Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213–220.  https://doi.org/10.1016/j.jecp.2015.01.005.PubMedCrossRefGoogle Scholar
  76. Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17, 67–84.  https://doi.org/10.1080/15248372.2014.996289.CrossRefGoogle Scholar
  77. Moll, H., & Tomasello, M. (2006). Level I perspective-taking at 24 months of age. British Journal of Developmental Psychology, 24, 603–613.  https://doi.org/10.1348/026151005X55370.CrossRefGoogle Scholar
  78. Möhring, W., Ishihara, M., Curiger, J., & Frick, A. (2017). Spatial-numerical associations in 1st-graders: Evidence from a manual-pointing task. Psychological Research, 1–9.  https://doi.org/10.1007/s00426-017-0904-4 PubMedGoogle Scholar
  79. National Research Council (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.Google Scholar
  80. Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34, 29–43.Google Scholar
  81. Newcombe, N. S., Möhring, W., & Frick, A. (in press). How big is many? Development of spatial and numerical magnitude understanding. In A. Henik & W. Fias (Eds.), Heterogeneity of function in numerical cognition.Google Scholar
  82. Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). New York, NY: Springer.  https://doi.org/10.1007/978-94-017-9297-4_10.Google Scholar
  83. O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396–402.  https://doi.org/10.3758/bf03200807.CrossRefGoogle Scholar
  84. OECD – Organisation for Economic Co-operation and Development (2013). PISA 2012 results: Excellence through equity: Giving every student the chance to succeed (Volume II). OECD, Paris.  https://doi.org/10.1787/9789264201132-en.CrossRefGoogle Scholar
  85. Orion, N., Ben-Chaim, D., & Kali, Y. (1997). Relationship between earth-science education and spatial visualization. Journal of Geoscience Education, 45, 129–132.  https://doi.org/10.5408/1089-9995-45.2.129.CrossRefGoogle Scholar
  86. Piaget, J., & Inhelder, B. (1956). The child’s conception of space (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton. (Original work published 1948).Google Scholar
  87. Piaget, J., & Inhelder, B. (1971). Mental imagery in the child; a study of the development of imaginal representation (P. A. Chilton, Trans.). New York: Basic. (Original work published 1966).Google Scholar
  88. Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 983–993.  https://doi.org/10.1016/s0896-6273(04)00107-2.PubMedCrossRefGoogle Scholar
  89. Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75, 191–212.  https://doi.org/10.1007/s10649-010-9251-8.CrossRefGoogle Scholar
  90. Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24, 229–240.  https://doi.org/10.1002/tea.3660240304.CrossRefGoogle Scholar
  91. Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122.  https://doi.org/10.1016/j.lindif.2009.10.005.CrossRefGoogle Scholar
  92. Ratliff, K. R., McGinnis, C. R., & Levine, S. C. (2010). The development and assessment of cross-sectioning ability in young children. Paper submitted to the 32nd Annual Conference of the Cognitive Science Society. Portland, OR.Google Scholar
  93. Reeve, R. A., Paul, J. M., & Butterworth, B. (2015). Longitudinal changes in young children’s 0–100 to 0–1000 number-line error signatures. Frontiers in Psychology, 6, 647.  https://doi.org/10.3389/fpsyg.2015.00647.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21, 387–399.  https://doi.org/10.1080/01443410120090786.CrossRefGoogle Scholar
  95. Ricken, G., Fritz, A., Schuck, K. D., & Preuss, U. (2007). HAWIVA-III: Hannover-Wechsler-Intelligenztest für das Vorschulalter – III. Bern: Huber.Google Scholar
  96. Rieser, J. J. (1979). Spatial orientation of six-month-old infants. Child Development, 50, 1078–1087.  https://doi.org/10.2307/1129334.PubMedCrossRefGoogle Scholar
  97. Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A neuropsychological perspective. Journal of Learning Disabilities, 26, 214–226.  https://doi.org/10.1177/002221949302600402.PubMedCrossRefGoogle Scholar
  98. Salatas, H., & Flavell, J. H. (1976). Perspective taking: The development of two components of knowledge. Child Development, 47, 103–109.  https://doi.org/10.2307/1128288.CrossRefGoogle Scholar
  99. Schaie, K. W. (1985). Schaie-Thurstone adult mental abilities test. Palo Alto: Consulting Psychologists Press.Google Scholar
  100. Schmid, C., Zoelch, C., & Roebers, C. M. (2008). Das Arbeitsgedächtnis von 4- bis 5-jährigen Kindern. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 40, 2–12.  https://doi.org/10.1026/0049-8637.40.1.2.CrossRefGoogle Scholar
  101. Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125, 4–27.  https://doi.org/10.1037/0096-3445.125.1.4.CrossRefGoogle Scholar
  102. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93, 604–614.  https://doi.org/10.1037/0022-0663.93.3.604.CrossRefGoogle Scholar
  103. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.  https://doi.org/10.1126/science.171.3972.701.PubMedCrossRefGoogle Scholar
  104. Sherman, J. (1979). Predicting mathematics performance in high school girls and boys. Journal of Educational Psychology, 71, 242.  https://doi.org/10.1037/0022-0663.71.2.242-249.CrossRefGoogle Scholar
  105. Siegel, A., & Schadler, M. (1977). The development of young children’s spatial representations of their classrooms. Child Development, 48, 388–394.  https://doi.org/10.2307/1128631.CrossRefGoogle Scholar
  106. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.  https://doi.org/10.1111/j.1467-8624.2004.00684.x.PubMedCrossRefGoogle Scholar
  107. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.  https://doi.org/10.1111/1467-9280.02438.PubMedCrossRefGoogle Scholar
  108. Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9, 315–320.  https://doi.org/10.1111/1467-9280.00062.CrossRefGoogle Scholar
  109. Slough, S. W., McTigue, E. M., Kim, S., & Jennings, S. K. (2010). Science textbooks’ use of graphical representation: A descriptive analysis of four sixth grade science texts. Reading Psychology, 31, 301–325.  https://doi.org/10.1080/02702710903256502.CrossRefGoogle Scholar
  110. Smith, I. M. (1964). Spatial ability: Its educational and social significance. San Diego: Knapp.  https://doi.org/10.2307/3119049.Google Scholar
  111. Sodian, B., Thoermer, C., & Metz, U. (2007). Now I see it but you don’t: 14-month-olds can represent another person’s visual perspective. Developmental Science, 10, 199–204.  https://doi.org/10.1111/j.1467-7687.2007.00580.x.PubMedCrossRefGoogle Scholar
  112. Sorby, S. (2009). Developing spatial cognitive skills among middle school students. Cognitive Processing, 10 (Suppl 2), 312–315.  https://doi.org/10.1007/s10339-009-0310-y.CrossRefGoogle Scholar
  113. Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21, 216–229.  https://doi.org/10.2307/749375.CrossRefGoogle Scholar
  114. Thurstone, L. L. (1950). Some primary abilities in visual thinking (Rep. no. 59). Chicago, IL: Psychometric Laboratory, University of Chicago.Google Scholar
  115. Uttal, D. H. (1996). Angles and distances: Children’s and adults’ reconstruction and scaling of spatial configurations. Child Development, 67, 2763–2779.  https://doi.org/10.1111/j.1467-8624.1996.tb01887.x.PubMedCrossRefGoogle Scholar
  116. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352.  https://doi.org/10.1037/a0028446.PubMedCrossRefGoogle Scholar
  117. van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119, 114–119.  https://doi.org/10.1016/j.cognition.2010.12.013.PubMedCrossRefGoogle Scholar
  118. Vasilyeva, M., & Huttenlocher, J. (2004). Early development of scaling ability. Developmental Psychology, 40, 682–690.  https://doi.org/10.1037/0012-1649.40.5.682.PubMedCrossRefGoogle Scholar
  119. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years. Monographs of the Society for Research in Child Development, 82, 1–150.  https://doi.org/10.1111/mono.12280.CrossRefGoogle Scholar
  120. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85, 1062–1076.  https://doi.org/10.1111/cdev.12165.PubMedCrossRefGoogle Scholar
  121. Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51.  https://doi.org/10.1016/j.jecp.2014.02.012.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.  https://doi.org/10.1037/0033-2909.117.2.250.PubMedCrossRefGoogle Scholar
  123. Wai, J., Lubinski, D., & Benbow, C. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835.  https://doi.org/10.1037/a0016127.CrossRefGoogle Scholar
  124. Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space, and quantity. Trends in Cognitive Sciences, 7, 483–488.  https://doi.org/10.1016/j.tics.2003.09.002.PubMedCrossRefGoogle Scholar
  125. Wang, R. F., & Simons, D. J. (1999). Active and passive scene recognition across views. Cognition, 70, 191–210.  https://doi.org/10.1016/S0010-0277(99)00012-8.PubMedCrossRefGoogle Scholar
  126. Wraga, M., Creem, S. H., & Proffitt, D. R. (2000). Updating displays after imagined object and viewer rotations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 151–168.  https://doi.org/10.1037/0278-7393.26.1.151.PubMedGoogle Scholar
  127. Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88, 465–492.  https://doi.org/10.1002/sce.10126.CrossRefGoogle Scholar
  128. Zacks, J. M., Rypma, B., Gabrieli, J. D. E., Tversky, B., & Glover, G. H. (1999). Imagined transformations of bodies: An fMRI investigation. Neuropsychologia, 37, 1029–1040.  https://doi.org/10.1016/S0028-3932(99)00012-3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BernBernSwitzerland
  2. 2.Department of PsychologyUniversity of FribourgFribourgSwitzerland

Personalised recommendations