Advertisement

The degenerin region of the human bile acid-sensitive ion channel (BASIC) is involved in channel inhibition by calcium and activation by bile acids

  • Alexandr V. Ilyaskin
  • Sonja A. Kirsch
  • Rainer A. Böckmann
  • Heinrich Sticht
  • Christoph Korbmacher
  • Silke Haerteis
  • Alexei Diakov
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters

Abstract

The bile acid-sensitive ion channel (BASIC) is a member of the ENaC/degenerin family of ion channels. It is activated by bile acids and inhibited by extracellular Ca2+. The aim of this study was to explore the molecular mechanisms mediating these effects. The modulation of BASIC function by extracellular Ca2+ and tauro-deoxycholic acid (t-DCA) was studied in Xenopus laevis oocytes heterologously expressing human BASIC using the two-electrode voltage-clamp and outside-out patch-clamp techniques. Substitution of aspartate D444 to alanine or cysteine in the degenerin region of BASIC, a region known to be critically involved in channel gating, resulted in a substantial reduction of BASIC Ca2+ sensitivity. Moreover, mutating D444 or the neighboring alanine (A443) to cysteine significantly reduced the t-DCA-mediated BASIC stimulation. A combined molecular docking/simulation approach demonstrated that t-DCA may temporarily form hydrogen bonds with several amino acid residues including D444 in the outer vestibule of the BASIC pore or in the inter-subunit space. By these interactions, t-DCA may stabilize the open state of the channel. Indeed, single-channel recordings provided evidence that t-DCA activates BASIC by stabilizing the open state of the channel, whereas extracellular Ca2+ inhibits BASIC by stabilizing its closed state. In conclusion, our results highlight the potential role of the degenerin region as a critical regulatory site involved in the functional interaction of Ca2+ and t-DCA with BASIC.

Keywords

Degenerin site Bile acids BASIC Tauro-deoxycholic acid Ca2+ Molecular dynamics (MD) simulations 

Notes

Acknowledgements

The expert technical assistance of Ralf Rinke is gratefully acknowledged. This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) (HA 6655/1-1 to S.H.), the DFG Research Training Group 1962/1, Dynamic Interactions at Biological Membranes—From Single Molecules to Tissue (S.A.K. and R.A.B.), and the Johannes and Frieda Marohn Stiftung (C.K.). Part of this work has been published in abstract form [20]. We thank Kristyna Pluhackova for support in the parameterization procedure.

Abbreviations

BASIC Bile acid-sensitive ion channel

ENaC Epithelial sodium channel

ASIC1 Acid-sensing ion channel 1

P o Open probability

t-DCA Tauro-deoxycholic acid

TMD, transmembrane domain

Author contributions

Alexandr V. Ilyaskin, Alexei Diakov, and Sonja A. Kirsch performed the experiments, analyzed the data, and prepared the figures (Alexandr V. Ilyaskin, Alexei Diakov: electrophysiological experiments; Alexandr V. Ilyaskin: molecular docking simulations; Sonja A. Kirsch: molecular dynamics simulations). Alexandr V. Ilyaskin, Sonja A. Kirsch, Rainer A. Böckmann, Heinrich Sticht, Christoph Korbmacher, Silke Haerteis, and Alexei Diakov designed the study, interpreted the data, and wrote the paper. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2018_2142_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1688 kb)

References

  1. 1.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201.  https://doi.org/10.1093/bioinformatics/bti770 CrossRefPubMedGoogle Scholar
  2. 2.
    Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489:400–405.  https://doi.org/10.1038/nature11375 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E (2014) X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel. Cell 156:717–729.  https://doi.org/10.1016/j.cell.2014.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Berendsen H, Postma J, van Gunsteren W, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690.  https://doi.org/10.1063/1.448118 CrossRefGoogle Scholar
  5. 5.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258.  https://doi.org/10.1093/nar/gku340 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101.  https://doi.org/10.1063/1.2408420 CrossRefPubMedGoogle Scholar
  7. 7.
    Case D, Babin V, Berryman J et al. (2014) Amber 14. University of CaliforniaGoogle Scholar
  8. 8.
    Chen X, Minofar B, Jungwirth P, Allen HC (2010) Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic acid using sum frequency spectroscopy and molecular dynamics simulation. J Phys Chem B 114:15546–15553.  https://doi.org/10.1021/jp1078339 CrossRefPubMedGoogle Scholar
  9. 9.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N · log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  10. 10.
    Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, Schmid G, Hugin D, Pflimlin P, Trube G, Rudolph MG, Hennig M, Ruf A (2012) Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat Commun 3:936.  https://doi.org/10.1038/ncomms1917 CrossRefPubMedGoogle Scholar
  11. 11.
    Diakov A, Korbmacher C (2004) A novel pathway of ENaC activation involves an SGK1 consensus motif in the C-terminus of the channel’s α-subunit. J Biol Chem 279:38134–38142.  https://doi.org/10.1074/jbc.M403260200 CrossRefPubMedGoogle Scholar
  12. 12.
    Diakov A, Bera K, Mokrushina M, Krueger B, Korbmacher C (2008) Cleavage in the γ-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol 586:4587–4608.  https://doi.org/10.1113/jphysiol.2008.154435 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Diakov A, Nesterov V, Mokrushina M, Rauh R, Korbmacher C (2010) Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell Physiol Biochem 26:913–924.  https://doi.org/10.1159/000324000 CrossRefPubMedGoogle Scholar
  14. 14.
    Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10:865–879.  https://doi.org/10.1021/ct4010307 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fujimoto A, Kodani Y, Furukawa Y (2017) Modulation of the FMRFamide-gated Na+ channel by external Ca2+. Arch Eur J Physiol 469:1335–1347.  https://doi.org/10.1007/s00424-017-2021-z CrossRefGoogle Scholar
  16. 16.
    Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604.  https://doi.org/10.1038/nature08218 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30 Suppl 1:S162–S173.  https://doi.org/10.1002/elps.200900140 CrossRefPubMedGoogle Scholar
  18. 18.
    Haerteis S, Krueger B, Korbmacher C, Rauh R (2009) The δ-subunit of the epithelial sodium channel (ENaC) enhances channel activity and alters proteolytic ENaC activation. J Biol Chem 284:29024–29040.  https://doi.org/10.1074/jbc.M109.018945 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C (2014) Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 289:19067–19078.  https://doi.org/10.1074/jbc.M113.538470 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ilyaskin A, Diakov A, Sticht H, Korbmacher C, Haerteis S (2016) The degenerin region of the human bile acid sensitive ion channel is involved in channel inhibition by calcium and activation by bile acids. Acta Physiol 216(S707):70–84.  https://doi.org/10.1111/apha.12671 Google Scholar
  21. 21.
    Ilyaskin AV, Diakov A, Korbmacher C, Haerteis S (2016) Activation of the human epithelial sodium channel (ENaC) by bile acids involves the degenerin site. J Biol Chem 291:19835–19847.  https://doi.org/10.1074/jbc.M116.726471 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ilyaskin AV, Diakov A, Korbmacher C, Haerteis S (2017) Bile acids potentiate proton-activated currents in Xenopus laevis oocytes expressing human acid-sensing ion channel (ASIC1a). Physiol Rep 5:e13132.  https://doi.org/10.14814/phy2.13132 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182.  https://doi.org/10.1021/ci049714+ CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323CrossRefPubMedGoogle Scholar
  25. 25.
    de Jong DH, Singh G, Bennett WF, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ (2013) Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput 9:687–697.  https://doi.org/10.1021/ct300646g CrossRefPubMedGoogle Scholar
  26. 26.
    Kellenberger S, Schild L (2015) International Union of Basic and Clinical Pharmacology. XCI. Structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 67:1–35.  https://doi.org/10.1124/pr.114.009225 CrossRefPubMedGoogle Scholar
  27. 27.
    Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392.  https://doi.org/10.1093/nar/gkn750 CrossRefPubMedGoogle Scholar
  28. 28.
    Korbmacher C, Volk T, Segal AS, Boulpaep EL, Frömter E (1995) A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J Membr Biol 146:29–45CrossRefPubMedGoogle Scholar
  29. 29.
    Lefèvre CM, Diakov A, Haerteis S, Korbmacher C, Gründer S, Wiemuth D (2014) Pharmacological and electrophysiological characterization of the human bile acid-sensitive ion channel (hBASIC). Arch Eur J Physiol 466:253–263.  https://doi.org/10.1007/s00424-013-1310-4 CrossRefGoogle Scholar
  30. 30.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958.  https://doi.org/10.1002/prot.22711 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Madej BD, Gould IR, Walker RC (2015) A parameterization of cholesterol for mixed lipid bilayer simulation within the Amber Lipid14 force field. J Phys Chem B 119:12424–12435.  https://doi.org/10.1021/acs.jpcb.5b04924 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791.  https://doi.org/10.1002/jcc.21256 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Páll S, Hess B (2013) A flexible algorithm for calculating pair interactions on SIMD architectures. Comput Phys Commun 184:2641–2650.  https://doi.org/10.1016/j.cpc.2013.06.003 CrossRefGoogle Scholar
  34. 34.
    Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2014) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S., Laure E. (eds) Solving Software Challenges for Exascale. EASC 2014. Lecture Notes in Computer Science, V. 8759. Springer, ChamGoogle Scholar
  35. 35.
    Paukert M, Babini E, Pusch M, Gründer S (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 124:383–394.  https://doi.org/10.1085/jgp.200308973 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pluhackova K, Kirsch SA, Han J, Sun L, Jiang Z, Unruh T, Böckmann RA (2016) A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers. J Phys Chem B 120:3888–3903.  https://doi.org/10.1021/acs.jpcb.6b01870 CrossRefPubMedGoogle Scholar
  37. 37.
    Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dotsch J, Sticht H, Korbmacher C (2010) A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J Physiol 588:1211–1225.  https://doi.org/10.1113/jphysiol.2009.180224 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sakai H, Lingueglia E, Champigny G, Mattei MG, Lazdunski M (1999) Cloning and functional expression of a novel degenerin-like Na+ channel gene in mammals. J Physiol 519(Pt 2):323–333CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61PubMedGoogle Scholar
  40. 40.
    Schaefer L, Sakai H, Mattei M, Lazdunski M, Lingueglia E (2000) Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na+ channel from human small intestine. FEBS Lett 471:205–210CrossRefPubMedGoogle Scholar
  41. 41.
    Schmidt A, Lenzig P, Oslender-Bujotzek A, Kusch J, Lucas SD, Gründer S, Wiemuth D (2014) The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment. PLoS One 9:e111549.  https://doi.org/10.1371/journal.pone.0111549 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schmidt A, Lohrer D, Alsop RJ, Lenzig P, Oslender-Bujotzek A, Wirtz M, Rheinstadter MC, Gründer S, Wiemuth D (2016) A cytosolic amphiphilic α-helix controls the activity of the bile acid-sensitive ion channel (BASIC). J Biol Chem 291:24551–24565.  https://doi.org/10.1074/jbc.M116.756437 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Siu SW, Pluhackova K, Böckmann RA (2012) Optimization of the OPLS-AA force field for long hydrocarbons. J Chem Theory Comput 8:1459–1470.  https://doi.org/10.1021/ct200908r CrossRefPubMedGoogle Scholar
  44. 44.
    Sun Y, Kollman PA (1995) Hydrophobic solvation of methane and nonbond parameters of the TIP3P water model. J Comput Chem 16:1164–1169.  https://doi.org/10.1002/jcc.540160910 CrossRefGoogle Scholar
  45. 45.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461.  https://doi.org/10.1002/jcc.21334 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690.  https://doi.org/10.1021/ct400617g CrossRefPubMedGoogle Scholar
  47. 47.
    Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155.  https://doi.org/10.1021/acs.jctc.5b00209 CrossRefPubMedGoogle Scholar
  48. 48.
    Wiemuth D, Gründer S (2011) The pharmacological profile of brain liver intestine Na+ channel: inhibition by diarylamidines and activation by fenamates. Mol Pharmacol 80:911–919.  https://doi.org/10.1124/mol.111.073726 CrossRefPubMedGoogle Scholar
  49. 49.
    Wiemuth D, Sahin H, Falkenburger BH, Lefèvre CM, Wasmuth HE, Gründer S (2012) BASIC-a bile acid-sensitive ion channel highly expressed in bile ducts. FASEB J 26:4122–4130.  https://doi.org/10.1096/fj.12-207043 CrossRefPubMedGoogle Scholar
  50. 50.
    Wiemuth D, Sahin H, Lefèvre CM, Wasmuth HE, Gründer S (2013) Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid. Channels (Austin) 7:38–42.  https://doi.org/10.4161/chan.22406 CrossRefGoogle Scholar
  51. 51.
    Wiemuth D, Lefèvre CM, Heidtmann H, Gründer S (2014) Bile acids increase the activity of the epithelial Na+ channel. Arch Eur J Physiol 466:1725–1733.  https://doi.org/10.1007/s00424-013-1403-0 CrossRefGoogle Scholar
  52. 52.
    Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810.  https://doi.org/10.1371/journal.pcbi.1000810 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Zelluläre und Molekulare PhysiologieFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Computational Biology, Department BiologieFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Abteilung für Bioinformatik, Institut für BiochemieFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations