Skip to main content
Log in

Estimation of maximal oxygen uptake by bioelectrical impedance analysis

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Previous non-exercise models for the prediction of maximal oxygen uptake (\( \dot V{\text{O}}_{{\text{2max}}} \)) have failed to accurately discriminate cardiorespiratory fitness within large cohorts. The aim of the present study was to evaluate the feasibility of a completely indirect method for predicting \( \dot V{\text{O}}_{{\text{2max}}} \) that was based on bioelectrical impedance analysis (BIA) in 66 young, healthy fit men and women. Multiple, stepwise regression analysis was used to determine the usefulness of BIA and additional covariates to estimate \( \dot V{\text{O}}_{{\text{2max}}} \) (ml min−1). BIA was highly correlated to \( \dot V{\text{O}}_{{\text{2max}}} \) (r = 0.914; P < 0.001) and entered the regression equation first. The inclusion of gender and a physical activity rating further improved the model which accounted for 88% of the variance in \( \dot V{\text{O}}_{{\text{2max}}} \) and resulted in a relative standard error of the estimate (SEE) of 7.2%. Substantial agreement between the methods was confirmed by the fact that nearly all the differences were within ±2 SD. Furthermore, in contrast to previously published non-exercise models, no trend of a reduction in prediction accuracy with increasing \( \dot V{\text{O}}_{{\text{2max}}} \) values was apparent. It was concluded that a non-exercise model based on BIA might be a rapid and useful technique to estimate \( \dot V{\text{O}}_{{\text{2max}}} \), when a direct test does not seem feasible. However, though the present results are useful to determine the viability of the method, further refinement of the BIA approach and its validation in a large, diverse population is needed before it can be applied to the clinical and epidemiological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. As total hemoglobin mass (tHb) is a primary determinant of high oxygen uptake and performance (Ekblom 2000; Joyner 2003; Warburton et al. 2000 for review), the high relationships found between BV and \( \dot V{\text{O}}_{{\text{2max}}} \) could be explained by the underlying association between BV and tHb. Given that hemoglobin concentration [Hb] is fairly constant among endurance-trained athletes and untrained individuals from the general population of the same gender and age (Malcovati et al. 2003; Martino et al. 2002; Schumacher et al. 2002), the variances accounted in \( \dot V{\text{O}}_{{\text{2max}}} \) by BV are likely to be due to the relationship between BV, [Hb] and tHb (BV=[Hb] × tHb)

References

  • Åstrand PO, Ryhming I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol 7:218–221

    PubMed  Google Scholar 

  • Armstrong N, Welsman J, Winsley R (1996) Is peak VO2 a maximal index of children’s aerobic fitness?. Int J Sports Med 17:356–359

    Article  PubMed  CAS  Google Scholar 

  • Belsey D, Kuh E, Welsch R (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York

    Google Scholar 

  • Berg K (2003) Endurance training and performance in runners: research limitations and unanswered questions. Sports Med 33:59–73

    Article  PubMed  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  • Brown B, Karatzas T, Nakielny R (1988) Determination of upper arm muscle and fat areas using electrical impedance methods: A comparative study. Clin Phys Physiol Meas 9:47–55

    Article  PubMed  CAS  Google Scholar 

  • Chumlea WC, Guo SS, Cockram DB, Siervogel RM (1996) Mechanical and physiologic modifiers and bioelectrical impedance spectrum determinants of body composition. Am J Clin Nutr 64(Suppl):413S-422S

    PubMed  CAS  Google Scholar 

  • Cole KS (1972) Membranes, ions, and impulses; a chapter of classical biophysics. University of California Press, Berkeley

    Google Scholar 

  • Davis JA, Storer TW, Caiozzo VJ, Pham PH (2002) Lower reference limit for maximal oxygen uptake in men and women. Clin Physiol Funct Imaging 22:332–338

    Article  PubMed  Google Scholar 

  • De Lorenzo A, Candeloro N, Bertini I, Talluri T, Pierangeli L (1998) Total body capacity correlated with basal metabolic rate. Appl Radiat Isot 49:493–494

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo A, Andreoli A, Battisti P, Talluri T, Yasumura S (2000) Total body capacitance correlates with total body potassium. Ann NY Acad Sci 904:259–262

    Article  PubMed  CAS  Google Scholar 

  • Deurenberg P, Van Malkenhorst E, Schoen T (1995) Distal versus proximal electrode placement in the prediction of total body water and extracellular water from multifrequency bioelectrical impedance. Am J Human Biol 7:77–83

    Article  Google Scholar 

  • Dittmar M, Reber H (2001) New equations for estimating body cell mass from bioimpedance parallel models in healthy older Germans. Am J Physiol Endocrinol Metab 281:E1005-E1014

    PubMed  CAS  Google Scholar 

  • Ekblom BT (2000) Blood boosting and sport. Baillieres Best Pract Res Clin Endocrinol Metab 14:89–98

    Article  PubMed  CAS  Google Scholar 

  • Elia M, Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC (2000) Modeling leg sections by bioelectrical impedance analysis, dual-energy X-ray absorptiometry, and anthropometry: assessing segmental muscle volume using magnetic resonance imaging as a reference. Ann NY Acad Sci 904:298–305

    Article  PubMed  CAS  Google Scholar 

  • Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Knox TA, Kotler DP, Lukaski HC, Schoeller DA (1999) Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition 15:874–880

    Article  PubMed  CAS  Google Scholar 

  • Fornetti WC, Pivarnik JM, Foley JM, Fiechtner JJ (1999) Reliability and validity of body composition measures in female athletes. J Appl Physiol 87:1114–1122

    PubMed  CAS  Google Scholar 

  • Fry JC (1993) Biological data analysis: a practical approach. IRL Press at Oxford University Press, Oxford

    Google Scholar 

  • Fuller NJ, Elia M (1989) Potential use of bioelectrical impedance of the ‘whole body’ and of body segments for the assessment of body composition: comparison with densitometry and anthropometry. Eur J Clin Nutr 43:779–791

    PubMed  CAS  Google Scholar 

  • Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC, Elia M (1999) Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Clin Sci 96:647–657

    Article  PubMed  CAS  Google Scholar 

  • Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JC (2002) Segmental bioelectrical impedance analysis in children aged 8–12 y: 1. The assessment of whole-body composition. Int. J Obes Relat Metab Disord 26:684–691

    Article  PubMed  CAS  Google Scholar 

  • George JD, Stone WJ, Burkett LN (1997) Non-exercise VO2max estimation for physically active college students. Med Sci Sports Exerc 29:415–423

    PubMed  CAS  Google Scholar 

  • Heil DP, Freedson PS, Ahlquist LE, Price J, Rippe JM (1995) Nonexercise regression models to estimate peak oxygen consumption. Med Sci Sports Exerc 27:599–606

    PubMed  CAS  Google Scholar 

  • Heymsfield SB, Gallagher D, Grammes J, Nunez C, Wang Z, Pietrobelli A (1998) Upper extremity skeletal muscle mass: potential of measurement with single frequency bioimpedance analysis. Appl Radiat Isot 49:473–474

    Article  PubMed  CAS  Google Scholar 

  • Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE (1990) Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc 22:863–870

    PubMed  CAS  Google Scholar 

  • Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471

    PubMed  CAS  Google Scholar 

  • Joyner MJ (2003) VO2MAX, blood doping, and erythropoietin. Br J Sports Med 37:190–191

    Article  PubMed  CAS  Google Scholar 

  • Kolkhorst FW, Dolgener FA (1994) Nonexercise model fails to predict aerobic capacity in college students with high VO2 peak. Res Q Exerc Sport 65:78–83

    PubMed  CAS  Google Scholar 

  • Kotler DP, Burastero S, Wang E, Pierson RN Jr (1996) Prediction of body cell mass, fat-free mass and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr 64:489S-497S

    PubMed  CAS  Google Scholar 

  • Kushner RF, Schoeller DA (1986) Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 44: 417–424

    PubMed  CAS  Google Scholar 

  • Lohman TG, Roche AF, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics Books, Champaign

    Google Scholar 

  • Löllgen H, Ulmer HV, Crean P (1988) Recommendations and standard guidelines for exercise testing. Report of the Task Force Conference on Ergometry, Titisee 1987. Eur Heart J 9(Suppl K):3–37

    PubMed  Google Scholar 

  • Lukaski HC (2000) Assessing regional muscle mass with segmental measurements of bioelectrical impedance in obese women during weight loss. Ann NY Acad Sci 904:154–158

    Article  PubMed  CAS  Google Scholar 

  • Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41:810–817

    PubMed  CAS  Google Scholar 

  • Malcovati L, Pascutto C, Cazzola M (2003) Hematologic passport for athletes competing in endurance sports: a feasibility study. Haematologica 88:570–581

    PubMed  Google Scholar 

  • Malek MH, Berger DE, Housh TJ, Coburn JW, Beck TW (2004a) Validity of VO2max equations for aerobically trained males and females. Med Sci Sports Exerc 36:1427–1432. DOI 10.1249/01.MSS.0000135795.60449.CE

    Google Scholar 

  • Malek MH, Housh TJ, Berger DE, Coburn JW, Beck TW (2004b) A new nonexercise-based VO2(max) equation for aerobically trained females. Med Sci Sports Exerc 36:1804–1810. DOI 10.1249/01.MSS.0000142299.42797.83

    Google Scholar 

  • Mamoto T, Fujiwara H, Toyama Y, Hirata K, Yoshikawa J, Fujimoto S (2003) Relationship between exercise performance and water distribution measured by new bioelectrical impedance analysis in patients with chronic obstructive pulmonary disease. Clin Physiol Funct Imaging 23:230–235. DOI10.1046/j.1475-097X.2003.00502.x

    Google Scholar 

  • Martino M, Gledhill N, Jamnik V (2002) High VO2max with no history of training is primarily due to high blood volume. Med Sci Sports Exerc 34:966–971

    Article  PubMed  Google Scholar 

  • Matthews CE, Heil DP, Freedson PS, Pastides H (1999) Classification of cardiorespiratory fitness without exercise testing. Med Sci Sports Exerc 31:486–493

    Article  PubMed  CAS  Google Scholar 

  • Miyatani M, Kanehisa H, Fukunaga T (2000) Validity of bioelectrical impedance and ultrasonographic methods for estimating the muscle volume of the upper arm. Eur J Appl Physiol 82:391–396

    Article  PubMed  CAS  Google Scholar 

  • Miyatani M, Kanehisa H, Masuo Y, Ito M, Fukunaga T (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91:386–394

    PubMed  CAS  Google Scholar 

  • Moore FD, Olesen KH, McMurray JD, Parker HV, Ball MR, Boyden CM (1963) The body cell mass and its supporting environment. Body composition in health and disease. Saunders, Philadelphia

    Google Scholar 

  • National Institutes of Health (NIH) Consensus Statement (1996) Bioelectrical impedance analysis in body composition measurement. National Institutes of Health Technology Assessment Conference Statement. Nutrition 12:749–762

  • Nunez C, Gallagher D, Grammes J, Baumgartner RN, Ross R, Wang Z, Thornton J, Heymsfield SB (1999) Bioimpedance analysis: potential for measuring lower limb skeletal muscle mass. JPEN J Parenter Enteral Nutr 23:96–103

    Article  PubMed  CAS  Google Scholar 

  • Organ LW, Bradham GB, Gore DT, Lozier SL (1994) Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol 77:98–112

    PubMed  CAS  Google Scholar 

  • Pedhazur EJ (1997) Multiple Regression in Behavioral Research. Wadsworth, Thomson Learning, Belmont

    Google Scholar 

  • Pietrobelli A, Morini P, Battistini N, Chiumello G, Nunez C, Heymsfield SB (1998) Appendicular skeletal muscle mass: prediction from multiple frequency segmental bioimpedance analysis. Eur J Clin Nutr 52:507–511

    Article  PubMed  CAS  Google Scholar 

  • Rigaud B, Morucci JP, Chauveau N (1996) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. Second section: impedance spectrometry. Crit Rev Biomed Eng 24:257–351

    PubMed  CAS  Google Scholar 

  • Roos AN, Westendorp RG, Frolich M, Meinders AE (1992) Tetrapolar body impedance is influenced by body posture and plasma sodium concentration. Eur J Clin Nutr 46:53–60

    PubMed  CAS  Google Scholar 

  • Sanada K, Kearns CF, Kojima K, Abe T (2004) Peak oxygen uptake during running and arm cranking normalized to total and regional skeletal muscle mass measured by magnetic resonance imaging. Eur J Appl Physiol (Published online: 20 November 2004) DOI 10.1007/s00421-004-1250-y

  • Schumacher YO, Schmid A, Grathwohl D, Bultermann D, Berg A, (2002) Hematological indices and iron status in athletes of various sports and performances. Med Sci Sports Exerc 34:869–875

    Article  PubMed  Google Scholar 

  • Siconolfi SF, Nusynowitz ML, Suire SS, Moore AD Jr, Leig J (1996) Determining blood and plasma volumes using bioelectrical response spectroscopy. Med Sci Sports Exerc 28:1510–1516

    PubMed  CAS  Google Scholar 

  • Snijder MB, Kuyf BE, Deurenberg P (1999) Effect of body build on the validity of predicted body fat from body mass index and bioelectrical impedance. Ann Nutr Metab 43:277–285

    Article  PubMed  CAS  Google Scholar 

  • Stahn A, Terblanche E, Strobel G (2004) Relationships between bioelectrical impedance and blood volume. Proceedings of the 11th Pre-Olympic Congress, Thessaloniki, Greece, pp 219–220

  • Toth MJ, Goran MI, Ades PA, Howard DB, Poehlman ET (1993) Examination of data normalization procedures for expressing peak VO2 data. J Appl Physiol 75:2288–2292

    PubMed  CAS  Google Scholar 

  • Varlet-Marie E, Brun J, Blachon C, Osetti A (1997) Relationships between body composition measured by bioelectrical impedance and exercise performance on cycloergometer. Sci Sports 12:204–206

    Article  Google Scholar 

  • Warburton DE, Gledhill N, Quinney HA (2000) Blood volume, aerobic power, and endurance performance: potential ergogenic effect of volume loading. Clin J Sport Med 10:59–66

    Article  PubMed  CAS  Google Scholar 

  • Whaley MH, Kaminsky LA, Dwyer GB, Getchell LH (1995) Failure of predicted VO2peak to discriminate physical fitness in epidemiological studies. Med Sci Sports Exerc 27:85–91

    PubMed  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical Analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

The authors thank Bärbel Himmelsbach for excellent technical support. Alexander Stahn would also like to thank Prof. Koeslag from the Department of Medical Physiology at the University of Stellenbosch for exceptional assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahn, A., Terblanche, E., Grunert, S. et al. Estimation of maximal oxygen uptake by bioelectrical impedance analysis. Eur J Appl Physiol 96, 265–273 (2006). https://doi.org/10.1007/s00421-005-0025-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-005-0025-4

Keywords

Navigation