Skip to main content

Advertisement

Log in

An update on the Golgi staining technique improving cerebellar cell type specificity

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The detailed morphological characterization of single cells was a major breakthrough in neuroscience during the turn of the twentieth century, enabling Ramon y Cajal to postulate the neuron doctrine. Even after 150 years, single cell analysis is an intriguing goal, newly motivated by the finding that autism might be caused by intricate and discreet changes in cerebellar morphology. Besides new single labelling technologies, the Golgi staining technique is still in use due to its whole cell labelling characteristics, its superior contrast performance over other methods and its apparent randomness of staining cells within a whole tissue block. However, the specificity and whole cell labelling of Golgi staining are also disputed controversially, and the method still has a poor reputation for being time consuming and needing high expenditures. We demonstrate here, how a classical Golgi technique can be adapted for staining different cerebellar cell types using a time-saving and efficient protocol, enabling the identification of the detailed morphological characteristics of single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc 44(2):139–177

    Google Scholar 

  • Angulo A, Merchan JA, Molina M (1994) Golgi–Colonnier method: correlation of the degree of chromium reduction and pH change with quality of staining. J Histochem Cytochem 42(3):393–403

    Article  CAS  PubMed  Google Scholar 

  • Angulo A, Fernández E, Merchan JA, Molina M (1996) A reliable method for Golgi staining of retina and brain slices. J Neurosci Methods 66(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Berbel PJ (1986) Chromation at low temperatures improves impregnation of neurons in Golgi-aldehyde methods. J Neurosci 17(4):255–259

    CAS  Google Scholar 

  • Bertram EG, Ihrig HK (1957) Improvement of the Golgi method by pH control. Stain Technol 32(2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Blackstad TW, Osen KK, Mugnaini E (1984) Pyramidal neurones of the dorsal cochlear nucleus: a Golgi and computer reconstruction study in cat. Neuroscience 13(3):827–854

    Article  CAS  PubMed  Google Scholar 

  • Bolton JS (1898) On the chrome-silver impregnation of formalin-hardened brain. Lancet 151(3882):218–219

    Article  Google Scholar 

  • Braitenberg V, Guglielmotti V, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42(6):277–283

    Article  CAS  PubMed  Google Scholar 

  • Colonnier M (1964) The tangential organization of the visual cortex. J Anat 98:327–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox WH (1891) Imprägnation des centralen Nervensystems mit Quecksilbersalzen. Arch Mikrosk Anat 37(1):16–21

    Article  Google Scholar 

  • Drekic D, Malobabic SP (1987) A simple modification of the Golgi method. Acta Vet 37(1):33–40

    Google Scholar 

  • Dröscher A (1998) Camillo Golgi and the discovery of the Golgi apparatus. Histochem Cell Biol 109(5–6):425–430

    PubMed  Google Scholar 

  • Elias PM, Park HD, Patterson AE, Lutzner MA, Wetzel BK (1972) Osmium tetroxide–zinc iodide staining of Golgi elements and surface coats of hydras. J Ultrastruct Res 40(1–2):87–102

    Article  CAS  PubMed  Google Scholar 

  • Fox CA, Ubeda-Purkiss M, Ihrig K, Biagioli D (1951) Zinc chromate modification of the Golgi technic. Stain Technol 26(2):109–114

    Article  CAS  PubMed  Google Scholar 

  • Fregerslev S, Blackstad TW, Fredens K, Holm MJ (1971) Golgi potassium-dichromate silver-nitrate impregnation. Nature of the precipitate studied by X-ray powder diffraction methods. Histochemie 25(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Friedland DR, Los JG, Ryugo DK (2006) A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Methods 150(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • García-López P, García-Marín V, Freire M (2007) The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog Neurobiol 83(2):110–130

    Article  PubMed  CAS  Google Scholar 

  • Glaser EM, van der Loos H (1981) Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi–Nissl stain. J Neurosci Methods 4(2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Golgi C (1873) Sulla struttura della sostanza grigia del cervello. Gazz Med Ital 33:244–246

    Google Scholar 

  • Gonzalez-Burgos I, Tapia-Arizmendi G, Feria-Velasco A (1992) Golgi method without osmium tetroxide for the study of the central nervous system. Biotech Histochem 67(5):288–296

    Article  CAS  PubMed  Google Scholar 

  • Hendelman WJ, Aggerwal AS (1980) The Purkinje neuron: I. A Golgi study of its development in the mouse and in culture. J Comp Neurol 193(4):1063–1079

    Article  CAS  PubMed  Google Scholar 

  • Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103(1):171–187

    Article  CAS  PubMed  Google Scholar 

  • Hoyer H (1894) Ueber die Anwendung des Formaldehyds in der histologischen Technik. Anat Anz 9:236–238

    Google Scholar 

  • Kaemmerer WF, Reddy RG, Warlick CA, Hartung SD, McIvor RS, Low WC (2000) In vivo transduction of cerebellar Purkinje cells using adeno-associated virus vectors. Mol Ther 2(5):446–457

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Hirano A (1985) A Golgi study of the proximal portion of the human Purkinje cell axon. Acta Neuropathol 68(3):191–195

    Article  CAS  PubMed  Google Scholar 

  • Knight E, Anton ED, Fahey D, Friedland BK, Jonak GJ (1985) Interferon regulates c-myc gene expression in Daudi cells at the post-transscriptional level. Proc Natl Acad Sci USA 82:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Kopsch F (1896) Erfahrungen über die Verwendung des Formaldehyds bei der Chromsilber-Imprägnation. Anat Anz 11:727–729

    Google Scholar 

  • Koyama Y (2013) The unending fascination with the Golgi method. OA Anat 1(3):24:1–8

    Google Scholar 

  • Lee VW-M, Li H, Lau T-C, Guevremont R, Michael Siu KW (1998) Relative silver(I) ion binding energies of α-amino acids. A determination by means of the kinetic method. J Am Soc Mass Spectrom Chem 9(8):760–766

    Article  CAS  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62

    Article  CAS  PubMed  Google Scholar 

  • Lo DC, McAllister AK, Katz LC (1994) Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13(6):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Maltecca F, Aghaie A, Schroeder DG, Cassina L, Taylor BA, Phillips SJ, Malaguti M, Previtali S, Guenet JL, Quattrini A, Cox GA, Casari G (2008) The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci 28(11):2827–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marani E, Guldemond JM, Adriolo PJ, Boon ME, Kok LP (1987) The microwave Rio-Hortega technique: a 24 hour method. Histochem J 19(12):658–664

    Article  CAS  PubMed  Google Scholar 

  • Milatovic D, Montine TJ, Zaja-Milatovic S, Madison JL, Bowman AB, Aschner M (2010) Morphometric analysis in neurodegenerative disorders. Curr Protoc Toxicol 12:12.16

    Google Scholar 

  • Morest DK, Morest RR (1966) Perfusion-fixation of the brain with chrome-osmium solutions for the rapid Golgi method. Am J Anat 118(3):811–831

    Article  CAS  PubMed  Google Scholar 

  • Mulisch M, Welsch U (2010) Romeis Histologische Technik. Spektrum Akademischer, Frankfurt

    Google Scholar 

  • Mulisch M, Welsch U (eds) (2015) Romeis—Mikroskopische Technik. Springer, Berlin

    Google Scholar 

  • Pannese E (1996) The black reaction. Brain Res Bull 41(6):343–349

    Article  CAS  PubMed  Google Scholar 

  • Pasternak JF, Woolsey TA (1975) On the “selectivity” of the Golgi–Cox method. J Comp Neurol 160(3):307–312

    Article  CAS  PubMed  Google Scholar 

  • Patro N, Kumar K, Patro I (2013) Quick Golgi method: modified for high clarity and better neuronal anatomy. Indian J Exp Biol 51(9):685–693

    PubMed  Google Scholar 

  • Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56(6):539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramón y Cajal S (1999) Texture of the nervous system of man and the vertebrates. Volume I: An annotated and edited translation of the original Spanish text with the additions of the French version by Pedro Pasik and Tauba Pasik. Springer, Vienna

    Book  Google Scholar 

  • Ramón y Cajal S, Castro F de (1933) Elementos de técnica micrográfica del sistema nervioso. Tipografía Artística, Madrid

    Google Scholar 

  • Ramón y Cajal S (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Pat 1:1–10

    Google Scholar 

  • Ranjan A, Mallick BN (2010) A modified method for consistent and reliable Golgi–Cox staining in significantly reduced time. Front Neurol 1(157):1–8

    Google Scholar 

  • Ranjan A, Mallick BN (2012) Differential staining of glia and neurons by modified Golgi–Cox method. J Neurosci Meth 209(2):269–279

    Article  CAS  Google Scholar 

  • Riley JN (1979) A reliable Golgi–Kopsch modification. Brain Res Bull 4(1):127–129

    Article  CAS  PubMed  Google Scholar 

  • Rosoklija G, Mancevski B, Ilievski B, Perera T, Lisanby SH, Coplan JD, Duma A, Serafimova T, Dwork AJ (2003) Optimization of Golgi methods for impregnation of brain tissue from humans and monkeys. J Neurosci Methods 131(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156:115–152

    Article  CAS  PubMed  Google Scholar 

  • Shiga T, Ichikawa M, Hirata Y (1983) A Golgi study of Bergmann glial cells in developing rat cerebellum. Anat Embryol 167(2):191–201

    Article  CAS  PubMed  Google Scholar 

  • Spacek J (1985) Three-dimensional analysis of dendritic spines. Anat Embryol 171:235–243

    Article  CAS  PubMed  Google Scholar 

  • Spacek J (1992) Dynamics of golgi impregnation in neurons. Microsc Res Tech 23(4):264–274

    Article  CAS  PubMed  Google Scholar 

  • Stefanović BD, Ristanovic D, Trpinac D, Đordević-Čamba V, Lačković V, Bumbaširević V, Obradović M, Bašic R, Ćetković M (1998) The acidophilic nature of neuronal Golgi impregnation. Acta Histochem 100(2):217–227

    Article  PubMed  Google Scholar 

  • Takayama K, Torashima T, Horiuchi H, Hirai H (2008) Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 443(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Tokuno H, Nakamura Y, Kudo M, Kitao Y (1990) Effect of Triton X-100 in the Golgi–Kopsch method. J Neurosci Meth 35(1):75–77

    Article  CAS  Google Scholar 

  • van den Pol AN, Ghosh PK (1998) Selective neuronal expression of green fluorescent protein with cytomegalovirus promoter reveals entire neuronal arbor in transgenic mice. J Neurosci 18(24):10640–10651

    Article  PubMed  Google Scholar 

  • Yuste R (2015) The discovery of dendritic spines by Cajal. Front Neuroanat 9:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaqout S, Kaindl AM (2016) Golgi–Cox staining step by step. Front Neuroanat 10:55

    Article  Google Scholar 

  • Zhang H, Weng SJ, Hutsler JJ (2003) Does microwaving enhance the Golgi methods? A quantitative analysis of disparate staining patterns in the cerebral cortex. J Neurosci Methods 124(2):145–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Stefanie Ramrath and Sabine Molly-Klumbies for their excellent technical help, and Daniela Krauss and Narziss Haias for providing animal husbandry. This work was supported by the Deutsche Forschungsgemeinschaft, Grant GZ: INST1172/37-1FUGG (to SLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Baader.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, commercial or non-commercial. All applicable international, national and/or institutional guidelines for the care and use of animals were followed (see “Materials and methods” section for details). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czechowska, N., van Rienen, A., Lang, F. et al. An update on the Golgi staining technique improving cerebellar cell type specificity. Histochem Cell Biol 151, 327–341 (2019). https://doi.org/10.1007/s00418-018-01766-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-01766-0

Keywords

Navigation