Skip to main content

Advertisement

Log in

Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Here we present an experimental study of the distribution of a broad range of trace elements between carbonatite melt, calcite and fluorite. The experiments were performed in the CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 synthetic system at 650–900 °C and 100 MPa using rapid-quench cold-seal pressure vessels. Starting mixtures were composed of reagent-grade oxides, carbonates, Ca3(PO4)2 and CaF2 doped with 1 wt% REE–HFSE mixture. The results show that the distribution coefficients of all the analyzed trace elements for calcite and fluorite are below 1, with the highest values observed for Sr (0.48–0.8 for calcite and 0.14–0.3 for fluorite) and Y (0.18–0.3). The partition coefficients of REE gradually increase with increasing atomic number from La to Lu. The solubility of Zr, Hf, Nb and Ta in the synthetic F-rich carbonatitic melts, which were used in our experiments, is low and limited by crystallization of baddeleyite and Nb-bearing perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281:333–342. https://doi.org/10.1016/j.chemgeo.2010.12.019

    Article  Google Scholar 

  • Broom-Fendley S, Brady AE, Wall F, Gunn G, Dawes W (2017) REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol Rev 81:23–41

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Couëslan C et al (2016) Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Minerol Petrol 110:361–377. https://doi.org/10.1007/s00710-015-0392-4

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998a) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Minerol Petrol 131:123–135

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998b) The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39:1953–1964

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Minerol 92:370–379

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol 262:57–77

    Article  Google Scholar 

  • Doroshkevich AG, Veksler I, Klemd R, Khromova EA, Izbrodin IA (2017) Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284–285:91–108. https://doi.org/10.1016/j.lithos.2017.04.003

    Article  Google Scholar 

  • Eggler DH (1978) The effect of CO<2) upon partial melting of peridotite in the system Na<2) O-CaO-Al<2) O<3) -MgO-SiO<2) -CO<2) to 35 kb, with an analysis of melting in a peridotite-H<2) O-CO<2) system. Am J Sci 278(3):305–343

    Article  Google Scholar 

  • Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94:364–370

    Article  Google Scholar 

  • Falloon TJ, Green DH (1990) The solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology 18:195–199

    Article  Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283

    Article  Google Scholar 

  • Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Minerol Petrol 145:391–405

    Article  Google Scholar 

  • Girnis AV, Bulatov VK, Brey GP, Gerdes A, Höfer HE (2013) Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 160–161:183–200

    Article  Google Scholar 

  • Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis m Sedona 16 years later. Chem Geol 117:1–36

    Article  Google Scholar 

  • Green TH, Adam J, Sie SH (1992) Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism. Mineral Petrol 46:179–184

    Article  Google Scholar 

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradation among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659

    Article  Google Scholar 

  • Hammouda T, Moine BN, Devidal JL, Vincent C (2009) Trace element partitioning during partial melting of carbonated eclogites. Phys Earth Planet Inter 174:60–69

    Article  Google Scholar 

  • Hammouda T, Chantel J, Devidal JL (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim Cosmochim Acta 74:7220–7235

    Article  Google Scholar 

  • Jago BC, Gittins J (1993) Pyrochlore crystallization in carbonatites: the role of fluorine. S Afr J Geol 96:149–159

    Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, Boston, pp 388–404

    Google Scholar 

  • Klemme S, van der Laan SR, Foley SF, Günther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133:439–448

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee W, Wyllie PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation and the origin of calciocarbonatites and natrocarbonatites. Int Geol Rev 36:797–819

    Article  Google Scholar 

  • Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin-Hyman, London, pp 149–176

    Google Scholar 

  • Martin LHJ, Schmidt MW, Hannes B, Mattsson HB, Ulmer P, Hametner K, Günther D (2012) Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite. Chem Geol 320–321:96–112

    Article  Google Scholar 

  • Martin LHJ, Schmidt MW, Mattson HB, Guenther D (2013) Element partitioning between immiscible carbonatite and silicate melts from dry and H2O-bearing systems at 1–3 GPa. J Petrol 54:2301–2338

    Article  Google Scholar 

  • Matthews W, Linnen RL, Guo Q (2003) A filler-rod technique for controlling redox conditions in cold-seal pressure vessels. Am Mineral 88:701–707

    Article  Google Scholar 

  • Mitchell RH (1997) Preliminary studies of the solubility and stability of perovskite group compounds in the synthetic carbonatite system calcite–portlandite. J Afr Earth Sci 25:147–158

    Article  Google Scholar 

  • Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068

    Article  Google Scholar 

  • Mitchell RH, Kjarsgaard BA (2002) Solubility of niobium in the system CaCO3–Ca(OH)2–NaNbO3 at 0.1 GPa pressure. Contrib Mineral Petrol 144:93–97. https://doi.org/10.1007/s00410-002-0384-3

    Article  Google Scholar 

  • Mitchell RH, Kjarsgaard BA (2004) Solubility of niobium in the system CaCO3–CaF2–NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma. Contrib Mineral Petrol 148:281–287. https://doi.org/10.1007/s00410-004-0603-1

    Article  Google Scholar 

  • Otto JW, Wyllie PJ (1993) Relationship between silicate melts and carbonate-precipitating melts in CaO–MgO–SiO2–CO2–H2O at 2 kbar. Mineral Petrol 48:343–365

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom. https://doi.org/10.1039/c1ja10172b

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim Cosmochim Acta 70:4997–5012

    Article  Google Scholar 

  • Ryabchikov ID, Orlova GP, Senin VG, Trubkin NV (1993) Partitioning of rare earth elements between phosphate-rich carbonatite melts and mantle peridotites. Mineral Petrol 49:1–12

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society of London, London, pp 313–345

    Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128:259–270

    Article  Google Scholar 

  • Sweeney RJ, Prozesky V, Przybylowicz W (1995) Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 kbar pressure. Geochim Cosmochim Acta 59:3671–3683

    Article  Google Scholar 

  • Tomkute V, Solheim A, Sakirzanovas S, Oye B, Olsent E (2014) Phase equilibria evaluation for CO2 capture: CaO–CaF2–NaF, CaCO3–NaF–CaF2, and Na2CO3–CaF2–NaF. J Chem Eng Data 59:1257–1263

    Article  Google Scholar 

  • Veksler IV, Nielsen TFD, Sokolov SV (1998a) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39:2015e2031

    Google Scholar 

  • Veksler IV, Petibon C, Jenner G, Dorfman AM, Dingwell DB (1998b) Trace element partitioning in immiscible silicate and carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346

    Article  Google Scholar 

  • Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation Inductively coupled plasma mass spectrometry. J Geostand Geoanal Res 31:331–343

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada. 28 pages (1 sheet); 1 CD-ROM. https://doi.org/10.4095/225115

  • Wyllie PJ, Huang WL (1976) Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applitations. Contrib Mineral Petrol 54:79–107

    Article  Google Scholar 

  • Xie Y, Hou Z, Yin S, Dominy SC, Xu J, Tian S, Xu W (2009) Continuous carbonatitic melt-liquid evolution for REE mineralization system: evidence from inclusions in the Maoniuping REE deposit in the western Sichuan, China. Ore Geol Rev 36:89–104

    Article  Google Scholar 

  • Xie Y, Li Y, Hou Z, Cook DR, Danyushevsky L, Dominy SC, Yin S (2015) A model for carbonatite hosted REE mineralisation—the Mianning–Dechang REE belt, western Sichuan Province, China. Ore Geol Rev 70:595–612

    Article  Google Scholar 

Download references

Acknowledgements

We thank Christian Schmidt, Hans-Peter Nabein, Reiner Schulz, Anton F. Shatsky, Konstantin D. Litasov, Galina I. Galay, Oona Appelt, Schäpan, Hau Hu for their help and consultations during preparation of the article. Reviews by Roberth Luth and Ramya Murali helped to significantly improve the text. The work is done on state assignment of IGM SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Chebotarev.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotarev, D.A., Veksler, I.V., Wohlgemuth-Ueberwasser, C. et al. Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa. Contrib Mineral Petrol 174, 4 (2019). https://doi.org/10.1007/s00410-018-1530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1530-x

Keywords

Navigation