Effects of neonatal excitotoxic lesions in ventral thalamus on social interaction in the rat

  • Rainer Wolf
  • Henrik Dobrowolny
  • Sven Nullmeier
  • Bernhard Bogerts
  • Herbert Schwegler
Original Paper

Abstract

The role of the thalamus in schizophrenia has increasingly been studied in recent years. Deficits in the ventral thalamus have been described in only few postmortem and neuroimaging studies. We utilised our previously introduced neurodevelopmental animal model, the neonatal excitotoxic lesion of the ventral thalamus of Sprague–Dawley rats (Wolf et al., Pharmacopsychiatry 43:99–109, 22). At postnatal day (PD7), male pubs received bilateral thalamic infusions with ibotenic acid (IBA) or artificial cerebrospinal fluid (control). In adulthood, social interaction of two animals not familiar to each other was studied by a computerised video tracking system. This study displays clear lesion effects on social interaction of adult male rats. The significant reduction of total contact time and the significant increase in distance between the animals in the IBA group compared to controls can be interpreted as social withdrawal modelling a negative symptom of schizophrenia. The significant increase of total distance travelled in the IBA group can be hypothesised as agitation modelling a positive symptom of schizophrenia. Using a triple concept of social interaction, the percentage of no social interaction (Non-SI%) was significantly larger, and inversely, the percentage of passive social interaction (SI-passive%) was significantly smaller in the IBA group when compared to controls. In conclusion, on the background of findings in schizophrenic patients, the effects of neonatal ventral thalamic IBA lesions in adult male rats support the hypothesis of face and construct validity as animal model of schizophrenia.

Keywords

Schizophrenia Rat Ventral thalamus Ibotenic acid Social interaction Video tracking 

Notes

Acknowledgements

This work was supported by the Federal Ministry of Education and Research of Germany (BMBF). We would like to thank Mrs. K. Paelchen and Mr. K. Matzke for excellent technical assistance. We declare that the experiments comply with the current laws of Germany.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Kovelman JA, Scheibel AB (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19:1601–1621PubMedGoogle Scholar
  2. 2.
    Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326CrossRefPubMedGoogle Scholar
  3. 3.
    Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19:431–445CrossRefPubMedGoogle Scholar
  4. 4.
    Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120CrossRefPubMedGoogle Scholar
  5. 5.
    Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55:433–440CrossRefPubMedGoogle Scholar
  6. 6.
    Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25CrossRefPubMedGoogle Scholar
  7. 7.
    Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669CrossRefPubMedGoogle Scholar
  8. 8.
    Bloom FE (1993) Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 50:224–227CrossRefPubMedGoogle Scholar
  9. 9.
    Waddington JL (1993) Schizophrenia: developmental neuroscience and pathobiology. Lancet 341:531–536CrossRefPubMedGoogle Scholar
  10. 10.
    Murray RM (1994) Neurodevelopmental schizophrenia: the rediscovery of dementia praecox. Br J Psychiatry Suppl 25:6–12Google Scholar
  11. 11.
    Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75CrossRefPubMedGoogle Scholar
  12. 12.
    Fiore M, Talamini L, Angelucci F, Koch T, Aloe L, Korf J (1999) Prenatal methylazoxymethanol acetate alters behavior and brain NGF levels in young rats: a possible correlation with the development of schizophrenia-like deficits. Neuropharmacology 38:857–869CrossRefPubMedGoogle Scholar
  13. 13.
    Schmadel S, Schwabe K, Koch M (2004) Effects of neonatal excitotoxic lesions of the entorhinal cortex on cognitive functions in the adult rat. Neuroscience 128:365–374CrossRefPubMedGoogle Scholar
  14. 14.
    Sumiyoshi T, Tsunoda M, Uehara T, Tanaka K, Itoh H, Sumiyoshi C, Kurachi M (2004) Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: behavioral and in vivo microdialysis studies. Neurosci Lett 364:124–129CrossRefPubMedGoogle Scholar
  15. 15.
    Harich S, Koch M, Schwabe K (2008) Effects of repeated dizocilpine treatment on adult rat behavior after neonatal lesions of the entorhinal cortex. Prog Neuropsychopharmacol Biol Psychiatry 32:816–827CrossRefPubMedGoogle Scholar
  16. 16.
    Lipska BK, Al-Amin HA, Weinberger DR (1998) Excitotoxic lesions of the rat medial prefrontal cortex. Effects on abnormal behaviors associated with neonatal hippocampal damage. Neuropsychopharmacology 19:451–464CrossRefPubMedGoogle Scholar
  17. 17.
    Schneider M, Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30:944–957CrossRefPubMedGoogle Scholar
  18. 18.
    Daenen EW, Van Der Heyden JA, Kruse CG, Wolterink G, Van Ree JM (2001) Adaptation and habituation to an open field and responses to various stressful events in animals with neonatal lesions in the amygdala or ventral hippocampus. Brain Res 918:153–165CrossRefPubMedGoogle Scholar
  19. 19.
    Bouwmeester H, Wolterink G, Van Ree JM (2002) Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J Comp Neurol 442:239–249CrossRefPubMedGoogle Scholar
  20. 20.
    Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM (2003) Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur Neuropsychopharmacol 13:187–197CrossRefPubMedGoogle Scholar
  21. 21.
    Lipska BK, Luu S, Halim ND, Weinberger DR (2003) Behavioral effects of neonatal and adult excitotoxic lesions of the mediodorsal thalamus in the adult rat. Behav Brain Res 141:105–111CrossRefPubMedGoogle Scholar
  22. 22.
    Wolf R, Matzke K, Paelchen K, Dobrowolny H, Bogerts B, Schwegler H (2010) Reduction of prepulse inhibition (PPI) after neonatal excitotoxic lesion of the ventral thalamus in pubertal and adult rats. Pharmacopsychiatry 43:99–109CrossRefPubMedGoogle Scholar
  23. 23.
    Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122:35–43CrossRefGoogle Scholar
  24. 24.
    Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl) 132:303–310CrossRefGoogle Scholar
  25. 25.
    Jones EG (1997) Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 23:483–501CrossRefPubMedGoogle Scholar
  26. 26.
    Weinberger DR (1997) On localizing schizophrenic neuropathology. Schizophr Bull 23:537–540CrossRefPubMedGoogle Scholar
  27. 27.
    Andreasen NC (1997) The role of the thalamus in schizophrenia. Can J Psychiatry 42:27–33CrossRefPubMedGoogle Scholar
  28. 28.
    Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull 23:403–421CrossRefPubMedGoogle Scholar
  29. 29.
    Byne W, Hazlett EA, Buchsbaum MS, Kemether E (2009) The thalamus and schizophrenia: current status of research. Acta Neuropathol 117:347–368CrossRefPubMedGoogle Scholar
  30. 30.
    Cronenwett WJ, Csernansky J (2010) Thalamic pathology in schizophrenia. Curr Top Behav Neurosci 4:509–528CrossRefPubMedGoogle Scholar
  31. 31.
    Konick LC, Friedman L (2001) Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 49:28–38CrossRefPubMedGoogle Scholar
  32. 32.
    Clinton SM, Meador-Woodruff JH (2004) Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 69:237–253CrossRefPubMedGoogle Scholar
  33. 33.
    Sim K, Cullen T, Ongur D, Heckers S (2006) Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm 113:907–928CrossRefPubMedGoogle Scholar
  34. 34.
    Lisman J (2012) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 22:537–544CrossRefPubMedGoogle Scholar
  35. 35.
    Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028CrossRefPubMedGoogle Scholar
  36. 36.
    Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G, Krell D, Falkai P, Bogerts B (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res 82:1–10CrossRefPubMedGoogle Scholar
  37. 37.
    Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL, Purohit DP, Haroutunian V, Jones L (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65CrossRefPubMedGoogle Scholar
  38. 38.
    Andreasen NC, Ehrhardt JC, Swayze VW, Alliger RJ, Yuh WT, Cohen G, Ziebell S (1990) Magnetic resonance imaging of the brain in schizophrenia. The pathophysiologic significance of structural abnormalities. Arch Gen Psychiatry 47:35–44CrossRefPubMedGoogle Scholar
  39. 39.
    Buchsbaum MS, Someya T, Teng CY, Abel L, Chin S, Najafi A, Haier RJ, Wu J, Bunney WE Jr (1996) PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry 153:191–199CrossRefPubMedGoogle Scholar
  40. 40.
    Brickman AM, Buchsbaum MS, Shihabuddin L, Byne W, Newmark RE, Brand J, Ahmed S, Mitelman SA, Hazlett EA (2004) Thalamus size and outcome in schizophrenia. Schizophr Res 71:473–484CrossRefPubMedGoogle Scholar
  41. 41.
    Harms MP, Wang L, Mamah D, Barch DM, Thompson PA, Csernansky JG (2007) Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 27:13835–13842CrossRefPubMedGoogle Scholar
  42. 42.
    Smith MJ, Wang L, Cronenwett W, Mamah D, Barch DM, Csernansky JG (2011) Thalamic morphology in schizophrenia and schizoaffective disorder. J Psychiatr Res 45:378–385CrossRefPubMedGoogle Scholar
  43. 43.
    Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? Br Med J 280:66–68CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Andreasen NC, Olsen S (1982) Negative v positive schizophrenia. Definition and validation. Arch Gen Psychiatry 39:789–794CrossRefPubMedGoogle Scholar
  45. 45.
    File SE, Hyde JR (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62:19–24CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Meyerson BJ, Hoglund AU (1981) Exploratory and socio-sexual behaviour in the male laboratory rat: a methodological approach for the investigation of drug action. Acta Pharmacol Toxicol (Copenh) 48:168–180CrossRefGoogle Scholar
  47. 47.
    Guy AP, Gardner CR (1985) Pharmacological characterisation of a modified social interaction model of anxiety in the rat. NeuropsychoBiology 13:194–200CrossRefPubMedGoogle Scholar
  48. 48.
    Corbett R, Hartman H, Kerman LL, Woods AT, Strupczewski JT, Helsley GC, Conway PC, Dunn RW (1993) Effects of atypical antipsychotic agents on social behavior in rodents. Pharmacol Biochem Behav 45:9–17CrossRefPubMedGoogle Scholar
  49. 49.
    File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53CrossRefPubMedGoogle Scholar
  50. 50.
    Wolf, Dobrowolny, Bogerts (2002) Search for an animal model of schizophrenia: effects of neonatal temporolimbic lesions on social interaction in adult rats. Pharmacopsychiatry 35:11Google Scholar
  51. 51.
    Wolf R, Dobrowolny H, Bogerts B (2004) Computergestützte Messung der sozialen Interaktion nach neonataler Ibotensäure-Läsion des temporolimbischen System der Ratte - ein Tiermodell der Schizophrenie? Nervenarzt 75(Suppl 2):S73Google Scholar
  52. 52.
    Panther P, Nullmeier S, Dobrowolny H, Schwegler H, Wolf R (2012) CPB-K mice a mouse model of schizophrenia? Differences in dopaminergic, serotonergic and behavioral markers compared to BALB/cJ mice. Behav Brain Res 230:215–228CrossRefPubMedGoogle Scholar
  53. 53.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar
  54. 54.
    Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, New JerseyGoogle Scholar
  55. 55.
    Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain. Plenum, New YorkGoogle Scholar
  56. 56.
    Ellenbroek BA, Cools AR (1990) Animal models with construct validity for schizophrenia. Behav Pharmacol 1:469–490CrossRefPubMedGoogle Scholar
  57. 57.
    Lipska BK, Weinberger DR (1995) Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats. Proc Natl Acad Sci USA 92:8906–8910CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ouhaz Z, Ba-M’hamed S, Mitchell AS, Elidrissi A, Bennis M (2015) Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behav Brain Res 292:219–232CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Geyer, Moghaddam B (2002) Animal models relevant to schizophrenia disorders. In: Davis KL, Charney DS, Coyle JT, Nemeroff C (eds) Neuropharmacology: the fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, pp 689–701Google Scholar
  60. 60.
    Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–196CrossRefPubMedGoogle Scholar
  61. 61.
    Adriano F, Spoletini I, Caltagirone C, Spalletta G (2010) Updated meta-analyses reveal thalamus volume reduction in patients with first episode and chronic schizophrenia. Schizophr Res 123:1–14CrossRefPubMedGoogle Scholar
  62. 62.
    Meador-Woodruff JH, Clinton SM, Beneyto M, McCullumsmith RE (2003) Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia. Ann N Y Acad Sci 1003:75–93CrossRefPubMedGoogle Scholar
  63. 63.
    Ferrarelli F, Tononi G (2011) The thalamic reticular nucleus and schizophrenia. Schizophr Bull 37:306–315CrossRefPubMedGoogle Scholar
  64. 64.
    Oke AF, Adams RN (1987) Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia. Schizophr Bull 13:589–604CrossRefPubMedGoogle Scholar
  65. 65.
    Oke AF, Putz C, Adams RN, Bird ED (1992) Neuroleptic treatment is an unlikely cause of elevated dopamine in thalamus of schizophrenic subjects. Psychiatry Res 45:203–208CrossRefPubMedGoogle Scholar
  66. 66.
    Simon H, Le MM, Galey D, Cardo B (1976) Silver impregnation of dopaminergic systems after radiofrequency and 6-OHDA lesions of the rat ventral brain. Brain Res 115:215–231CrossRefPubMedGoogle Scholar
  67. 67.
    Young KA, Randall PK, Wilcox RE (1995) Startle and sensorimotor correlates of ventral thalamic dopamine and GABA in rodents. Neuroreport 6:2495–2499CrossRefPubMedGoogle Scholar
  68. 68.
    Simpson EH, Winiger V, Biezonski DK, Haq I, Kandel ER, Kellendonk C (2014) Selective overexpression of dopamine D3 receptors in the striatum disrupts motivation but not cognition. Biol Psychiatry 76:823–831CrossRefPubMedGoogle Scholar
  69. 69.
    Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 160:1100–1109CrossRefPubMedGoogle Scholar
  70. 70.
    Clinton SM, Haroutunian V, Meador-Woodruff JH (2006) Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia. J Neurochem 98:1114–1125CrossRefPubMedGoogle Scholar
  71. 71.
    Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson R-M, Hefner K, Sprengel R, Celikel T, Daws LC, Holmes A (2014) Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 13:631–640CrossRefGoogle Scholar
  72. 72.
    Inta D, Miriam A, Vogt MA, Elkin H, Weber T, Juan M, Lima-Ojeda JM, Schneider M, Luoni A, Riva MA, Gertz K, Hellmann-Regen J, Kronenberg G, Meyer-Lindenberg A, Sprengel R, Gass P (2014) Phenotype of mice with inducible ablation of GluA1 AMPA receptors during late adolescence: relevance for mental disorders. Hippocampus 24:424–435CrossRefPubMedGoogle Scholar
  73. 73.
    Wolf R, Dobrowolny H, Matzke K, Paelchen K, Bogerts B, Schwegler H (2006) Prepulse inhibition is different in two inbred mouse strains (CPB-K and BALB/cJ) with different hippocampal NMDA receptor densities. Behav Brain Res 166:78–84CrossRefPubMedGoogle Scholar
  74. 74.
    DiChiara G, Morelli M, Porceddu ML, Gessa GL (1979) Role of thalamic gamma-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol. Neuroscience 4:1453–1465CrossRefGoogle Scholar
  75. 75.
    Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144CrossRefGoogle Scholar
  76. 76.
    van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160:492–494PubMedGoogle Scholar
  77. 77.
    Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007CrossRefPubMedGoogle Scholar
  78. 78.
    Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533CrossRefPubMedGoogle Scholar
  79. 79.
    Tamminga C (1999) Glutamatergic aspects of schizophrenia. Br J Psychiatry Suppl 37:12–15Google Scholar
  80. 80.
    Carlsson A, Waters N, Carlsson ML (2000) Network interactions in schizophrenia—therapeutic implications. Brain Res Rev 31:342–349CrossRefPubMedGoogle Scholar
  81. 81.
    Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Rev 31:251–269CrossRefPubMedGoogle Scholar
  82. 82.
    Lewis DA (2000) GABAergic local circuit neurons and prefrontal cortical dysfunction inschizophrenia. Brain Res Rev 31:270–276CrossRefPubMedGoogle Scholar
  83. 83.
    Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S (2001) Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 24:330–334CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PsychiatryRuhr-University BochumBochumGermany
  2. 2.Department of PsychiatryOtto-von-Guericke UniversityMagdeburgGermany
  3. 3.Institute of AnatomyOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations