Rheologica Acta

, Volume 57, Issue 4, pp 293–306 | Cite as

Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions

  • Francesco Del Giudice
  • Benjamin V. Cunning
  • Rodney S. Ruoff
  • Amy Q. Shen
Original Contribution
  • 185 Downloads

Abstract

Even though the rheological behavior of aqueous graphene oxide (G-O) dispersions has been shown to be strongly time-dependent, only few transient measurements have been reported in the literature. In this work, we attempt to fill the gap between transient and steady shear rheological characterizations of aqueous G-O dispersions in the concentration range of 0.004 < ϕ < 3.5 wt%, by conducting comprehensive rheological measurements, including oscillatory shear flow, transient shear flow, and steady shear flow. Steady shear measurements have been performed after the evaluation of transient properties of the G-O dispersions, to assure steady-state conditions. We identify the critical concentration ϕ c = 0.08 wt% (where G-O sheets start to interact) from oscillatory shear experiments. We find that the rheology of G-O dispersions strongly depends on the G-O concentration ϕ. Transient measurements of shear viscosity and first normal stress difference suggest that G-O dispersions behave like nematic polymeric liquid crystals at ϕ/ϕ c = 25, in agreement with other work reported in the literature. G-O dispersions also display a transition from negative to positive values of the first normal stress difference with increasing shear rates. Experimental findings of aqueous graphene oxide dispersions are compared and discussed with models and experiments reported for nematic polymeric liquid crystals, laponite, and organoclay dispersions.

Keywords

Graphene oxide Liquid crystals 2D suspensions 2D dispersions Normal stress Rheology 

Notes

Acknowledgements

The authors thank Dr. Steven Aird for careful proof reading. The authors also thank Prof. Pier Luca Maffettone, Prof. Giovanniantonio Natale, and Prof. Gareth McKinley for helpful discussions. F.D.G. and A.Q.S. gratefully acknowledge the support of the Okinawa Institute of Science and Technology Graduate University with subsidy funding from the Cabinet Office, Government of Japan. B.V.C. and R.S.R were supported by IBS-R019-D1.

Supplementary material

397_2018_1077_MOESM1_ESM.pdf (702 kb)
(PDF 701 KB)

References

  1. Abou B, Bonn D, Meunier J (2003) Nonlinear rheology of laponite suspensions under an external drive. J Rheol 47(4):979–988CrossRefGoogle Scholar
  2. Aboutalebi S H, Gudarzi M M, Zheng Q B, Kim J K (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988CrossRefGoogle Scholar
  3. Akbari A, Sheath P, Martin S T, Shinde D B, Shaibani M, Banerjee P C, Tkacz R, Bhattacharyya D, Majumder M (2016) Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun, 7Google Scholar
  4. Bai H, Li C, Wang X, Shi G (2011) On the gelation of graphene oxide. J Phys Chem C 115 (13):5545–5551CrossRefGoogle Scholar
  5. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology, vol 3. Elsevier, AmsterdamGoogle Scholar
  6. Barrat J L, Berthier L (2000) Fluctuation-dissipation relation in a sheared fluid. Phys Rev E 63(1):012,503CrossRefGoogle Scholar
  7. Bekkour K, Leyama M, Benchabane A, Scrivener O (2005) Time-dependent rheological behavior of bentonite suspensions: an experimental study. J Rheol 49(6):1329–1345CrossRefGoogle Scholar
  8. Benna M, Kbir-Ariguib N, Magnin A, Bergaya F (1999) Effect of ph on rheological properties of purified sodium bentonite suspensions. J Colloid Interface Sci 218(2):442–455CrossRefGoogle Scholar
  9. Berthier L, Barrat J L, Kurchan J (2000) A two-time-scale, two-temperature scenario for nonlinear rheology. Phys Rev E 61(5):5464CrossRefGoogle Scholar
  10. Chatterjee T, Krishnamoorti R (2013) Rheology of polymer carbon nanotubes composites. Soft Matter 9 (40):9515–9529CrossRefGoogle Scholar
  11. Cocchini F, Nobile M, Acierno D (1992) Letter: about negative first normal stress differences in a thermotropic l.c. polymer. J Rheol 36:1307–1311CrossRefGoogle Scholar
  12. Cugliandolo L F, Kurchan J, Peliti L (1997) Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys Rev E 55(4):3898CrossRefGoogle Scholar
  13. Das S, Irin F, Ma L, Bhattacharia S K, Hedden R C, Green M J (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interfaces 5(17):8633–8640CrossRefGoogle Scholar
  14. D’Avino G, Maffettone P (2015) Particle dynamics in viscoelastic liquids. J Non-Newton Fluid 215:80–104CrossRefGoogle Scholar
  15. Del Giudice F, Shen A Q (2017) Shear rheology of graphene oxide dispersions. Curr Opin Chem Eng 16C:23–30CrossRefGoogle Scholar
  16. Dinkgreve M, Paredes J, Denn M M, Bonn D (2016) On different ways of measuring “the” yield stress. J Non-Newtonian Fluid Mech 238:233–241CrossRefGoogle Scholar
  17. Dreyer D R, Park S, Bielawski C W, Ruoff R S (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRefGoogle Scholar
  18. Eppenga R, Frenkel D (1984) Monte carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys 52(6):1303–1334CrossRefGoogle Scholar
  19. Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Complex fluids in biological systems. Springer, pp 207–241Google Scholar
  20. Geim A K, Novoselov K S (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRefGoogle Scholar
  21. Green M J, Behabtu N, Pasquali M, Adams W W (2009) Nanotubes as polymers. Polymer 50 (21):4979–4997CrossRefGoogle Scholar
  22. Guimont A, Beyou E, Martin G, Sonntag P, Cassagnau P (2011) Viscoelasticity of graphite oxide-based suspensions in pdms. Macromolecules 44(10):3893–3900CrossRefGoogle Scholar
  23. Hato M J, Zhang K, Ray S S, Choi H J (2011) Rheology of organoclay suspension. Colloid Polym Sci 289(10):1119CrossRefGoogle Scholar
  24. Hobbie E K (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49(4):323–334CrossRefGoogle Scholar
  25. Jun SI, Lee HS (2012) Negative normal stress differences in graphene/polycarbonate composites. Appl Phys Lett 100(16):164,108CrossRefGoogle Scholar
  26. Khandal R, Tadros T F (1988) Application of viscoelastic measurements to the investigation of the swelling of sodium montmorillonite suspensions. J Colloid Interface Sci 125(1):122–128CrossRefGoogle Scholar
  27. Kim H, Macosko C W (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50(15):3797–3809CrossRefGoogle Scholar
  28. Kim J E, Lee H S (2014) Oscillatory shear induced gelation of graphene–poly (vinyl alcohol) composite hydrogels and rheological premonitor of ultra-light aerogels. Polymer 55(1):287–294CrossRefGoogle Scholar
  29. Kimura H, Sakurai M, Sugiyama T, Tsuchida A, Okubo T, Masuko T (2011) Dispersion state and rheology of hectorite particles in water over a broad range of salt and particle concentrations. Rheol Acta 50 (2):159–168CrossRefGoogle Scholar
  30. King H Jr, Milner S T, Lin M Y, Singh J P, Mason T (2007) Structure and rheology of organoclay suspensions. Phys Rev E 75(2):021,403CrossRefGoogle Scholar
  31. Kiss G, Porter R S (1978) Rheology of concentrated solutions of poly (γ-benzyl-glutamate). In: Journal of polymer science: polymer symposia, Wiley Online Library, vol 65, pp 193–211Google Scholar
  32. Krieger I M, Dougherty T J (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol (1957–1977) 3(1):137–152CrossRefGoogle Scholar
  33. Kugge C, Vanderhoek N, Bousfield D (2011) Oscillatory shear response of moisture barrier coatings containing clay of different shape factor. J Colloid Interface Sci 358(1):25–31CrossRefGoogle Scholar
  34. Kumar P, Maiti U N, Lee K E, Kim S O (2014) Rheological properties of graphene oxide liquid crystal. Carbon 80:453–461CrossRefGoogle Scholar
  35. Labanda J, Sabaté J, Llorens J (2007) Rheology changes of laponite aqueous dispersions due to the addition of sodium polyacrylates of different molecular weights. Colloids Surf A Physicochem Eng Asp 301(1):8–15CrossRefGoogle Scholar
  36. Larson R (1990) Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17):3983–3992CrossRefGoogle Scholar
  37. Larson RG (1999) The structure and rheology of complex fluids, vol 150. Oxford University Press, New YorkGoogle Scholar
  38. Li D, Müller M B, Gilje S, Kaner R B, Wallace G G (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRefGoogle Scholar
  39. Lin-Gibson S, Pathak J, Grulke E, Wang H, Hobbie E (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92(4):048,302CrossRefGoogle Scholar
  40. Liu J, Chen G, Jiang M (2011) Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers. Macromolecules 44(19):7682–7691CrossRefGoogle Scholar
  41. Liu Y, Chen C, Liu L, Zhu G, Kong Q, Hao R, Tan W (2015) Rheological behavior of high concentrated dispersions of graphite oxide. Soft Mater 13(3):167–175CrossRefGoogle Scholar
  42. Lu C, Mai Y W (2005) Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95(8):088, 303CrossRefGoogle Scholar
  43. Macosko C (1994) Rheology: Principles, measurements, and applications. 1994. Wiley-VCH, WeinheimGoogle Scholar
  44. Marrucci G, Maffettone P (1989) A description of the liquid-crystalline phase of rodlike polymers at high shear rates. Macromolecules 22(10):4076–4082CrossRefGoogle Scholar
  45. Marrucci G, Maffettone P (1990a) Nematic phase of rodlike polymers. I. Prediction of transient behavior at high shear rates. J Rheol 34(8):1217–1230Google Scholar
  46. Marrucci G, Maffettone P (1990b) Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regime. J Rheol 34(8):1231–1244Google Scholar
  47. Michot L J, Bihannic I, Maddi S, Funari S S, Baravian C, Levitz P, Davidson P (2006) Liquid–crystalline aqueous clay suspensions. Proc Natl Acad Sci 103(44):16,101–16,104CrossRefGoogle Scholar
  48. Moan M, Aubry T, Bossard F (2003) Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J Rheol 47(6):1493–1504CrossRefGoogle Scholar
  49. Montesi A, Peña A A, Pasquali M (2004) Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys Rev Lett 92(5):058,303CrossRefGoogle Scholar
  50. Naficy S, Jalili R, Aboutalebi S H, Gorkin I I I R A, Konstantinov K, Innis P C, Spinks G M, Poulin P, Wallace G G (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1(3):326–331CrossRefGoogle Scholar
  51. Niu R, Gong J, Xu D, Tang T, Sun Z Y (2014) Influence of molecular weight of polymer matrix on the structure and rheological properties of graphene oxide/polydimethylsiloxane composites. Polymer 55(21):5445–5453CrossRefGoogle Scholar
  52. Niu X, Gong J, Xu D, Tanga T, Sun Z Y (2015) Impact of particle surface chemistry on the structure and rheological properties of graphene-based particle/polydimethylsiloxane composites. RSC Adv 5:34,885–34,893CrossRefGoogle Scholar
  53. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51(4):627–659CrossRefGoogle Scholar
  54. Osuji C O, Weitz D A (2008) Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. Soft Matter 4(7):1388–1392CrossRefGoogle Scholar
  55. Park S, Ruoff R S (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRefGoogle Scholar
  56. Perge C, Taberlet N, Gibaud T, Manneville S (2014) Time dependence in large amplitude oscillatory shear: a rheo-ultrasonic study of fatigue dynamics in a colloidal gel. J Rheol 58(5):1331– 1357CrossRefGoogle Scholar
  57. Pignon F, Magnin A, Piau J M (1997a) Butterfly light scattering pattern and rheology of a sheared thixotropic clay gel. Phys Rev Lett 79(23):4689Google Scholar
  58. Pignon F, Magnin A, Piau J M, Cabane B, Lindner P, Diat O (1997b) Yield stress thixotropic clay suspension: investigations of structure by light, neutron, and x-ray scattering. Phys Rev E 56(3): 3281Google Scholar
  59. Potts J R, Dreyer D R, Bielawski C W, Ruoff R S (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25CrossRefGoogle Scholar
  60. Renou F, Stellbrink J, Petekidis G (2010) Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (laos). J Rheol 54(6):1219–1242CrossRefGoogle Scholar
  61. Sadasivuni K K, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25CrossRefGoogle Scholar
  62. Saunders J M, Goodwin J W, Richardson R M, Vincent B (1999) A small-angle x-ray scattering study of the structure of aqueous laponite dispersions. J Phys Chem B 103(43):9211–9218CrossRefGoogle Scholar
  63. Schiller P, Bombrowski M, Wahab M, Mögel H J (2016) Models for normal stress and orientational order in sheared kaolin suspensions. J Rheol 60(2):311–325CrossRefGoogle Scholar
  64. Schweizer T, Bardow A (2006) The role of instrument compliance in normal force measurements of polymer melts. Rheol Acta 45(4):393–402CrossRefGoogle Scholar
  65. Shaffer M, Windle A (1999) Analogies between polymer solutions and carbon nanotube dispersions. Macromolecules 32(20):6864– 6866CrossRefGoogle Scholar
  66. Shih W Y, Shih W H, Aksay I A (1999) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82(3):616–624CrossRefGoogle Scholar
  67. Singh V K, Cura M E, Liu X, Johansson L S, Ge Y, Hannula S P (2014) Tuning the mechanical and adsorption properties of silica with graphene oxide. ChemPlusChem 79(10):1512–1522CrossRefGoogle Scholar
  68. Sohm R, Tadros T F (1989) Viscoelastic properties of sodium montmorillonite (gelwhite h) suspensions. J Colloid Interface Sci 132(1):62–71CrossRefGoogle Scholar
  69. Sun X, Luo D, Liu J, Evans D G (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. Acs Nano 4(6):3381–3389CrossRefGoogle Scholar
  70. Tesfai W, Singh P, Shatilla Y, Iqbal M Z, Abdala A A (2013) Rheology and microstructure of dilute graphene oxide suspension. J Nanopart Res 15(10):1–7CrossRefGoogle Scholar
  71. Tripathi S N, Malik R S, Choudhary V (2015) Melt rheology and thermomechanical behavior of poly (methyl methacrylate)/reduced graphene oxide nanocomposites. Polym Advan Technol 26(12):1558–1566CrossRefGoogle Scholar
  72. Vallés C, Young R J, Lomax D J, Kinloch I A (2014) The rheological behaviour of concentrated dispersions of graphene oxide. J Mater Sci 49(18):6311–6320CrossRefGoogle Scholar
  73. Vasu K, Krishnaswamy R, Sampath S, Sood A (2013) Yield stress, thixotropy and shear banding in a dilute aqueous suspension of few layer graphene oxide platelets. Soft Matter 9(25):5874–5882CrossRefGoogle Scholar
  74. Walters K (1975) Rheometry. Chapman & Hall, LondonGoogle Scholar
  75. Xu Z, Gao C (2011) Aqueous liquid crystals of graphene oxide. ACS Nano 5(4):2908–2915CrossRefGoogle Scholar
  76. Yang X, Guo C, Ji L, Li Y, Tu Y (2013) Liquid crystalline and shear-induced properties of an aqueous solution of graphene oxide sheets. Langmuir 29(25):8103–8107CrossRefGoogle Scholar
  77. Yao L, Lu Y, Wang Y, Hu L (2014) Effect of graphene oxide on the solution rheology and the film structure and properties of cellulose carbamate. Carbon 69:552–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Micro/Bio/Nanofluidics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
  2. 2.Systems and Process Engineering Centre, College of EngineeringSwansea UniversitySwanseaUK
  3. 3.Center for Multidimensional Carbon Materials (CMCM)Institute for Basic Science (IBS)UlsanRepublic of Korea
  4. 4.Department of ChemistryUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  5. 5.School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations