Fucoxanthin inhibits lipopolysaccharide-induced inflammation and oxidative stress by activating nuclear factor E2-related factor 2 via the phosphatidylinositol 3-kinase/AKT pathway in macrophages

Abstract

Purpose

Anti-inflammatory and antioxidant effects of fucoxanthin (FCX), a xanthophyll carotenoid, have been suggested. However, underlying mechanisms are elusive. The objective of this study was to elucidate the mechanisms by which FCX and its metabolites inhibit lipopolysaccharide (LPS)-induced inflammation and oxidative stress in macrophages.

Methods

The effects of the FCX on mRNA and protein expression of pro-inflammatory cytokines and antioxidant genes, and reactive oxygen species (ROS) accumulation were determined in RAW 264.7 macrophages. A potential role of FCX in the modulation of phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear E2-related factor 2 (NRF2) axis was evaluated.

Results

FCX significantly decreased LPS-induced interleukin (Il)6, Il1b, and tumor necrosis factor α (Tnf) mRNA abundance and TNFα secretion. FCX attenuated LPS or tert-butyl-hydroperoxide-induced ROS accumulation with concomitant increases in the expression of antioxidant enzymes. Also, trolox equivalent antioxidant capacity assay demonstrated that FCX had a potent free radical scavenging property. FCX markedly increased nuclear translocation of NRF2 in LPS-treated macrophages, consequently inducing its target gene expression. Interestingly, the effect of FCX on NRF2 nuclear translocation was noticeably diminished by LY294002, an inhibitor of PI3K, but not by inhibitors of mitogen-activated protein kinases. Phosphorylation of AKT, a downstream element of PI3K, was also markedly increased by FCX. FCX metabolites, such as fucoxanthinol and amarouciaxanthin A, significantly attenuated LPS-induced ROS accumulation and pro-inflammatory cytokine expression.

Conclusion

FCX exerts anti-inflammatory and antioxidant effects by the activation of NRF2 in the macrophages activated by LPS, which is mediated, at least in part, through the PI3K/AKT pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

ACXA:

Amarouciaxanthin A

ARE:

Antioxidant response element

BMDM:

Bone marrow-derived macrophages

Cat:

Catalase

FCN:

Fucoxanthinol

FCX:

Fucoxanthin

FAK:

Focal adhesion kinase

Gpx1:

Glutathione peroxidase 1

Hmox1:

Heme oxygenase-1

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

Keap1:

Kelch-like ECH-associated protein 1

LPS:

Lipopolysaccharide

MAPKs:

Mitogen-activated protein kinases

NF-κB:

Nuclear factor κB

NRF2:

Nuclear E2-related factor 2

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

Sod1:

Superoxide dismutase 1

TAC:

Total antioxidant capacity

t-BHP:

Tert-butyl-hydroperoxide

TEAC:

Trolox equivalent antioxidant capacity

TNFα:

Tumor necrosis factor α

References

  1. 1.

    Hayakawa S, Ohashi K, Shibata R, Takahashi R, Otaka N, Ogawa H, Ito M, Kanemura N, Hiramatsu-Ito M, Ikeda N, Murohara T (2016) Association of circulating follistatin-like 1 levels with inflammatory and oxidative stress markers in healthy men. PLoS One 11(5):e0153619

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Ruiz S, Pergola PE, Zager RA, Vaziri ND (2013) Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 83(6):1029–1041

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig 114(12):1752–1761

    Article  Google Scholar 

  4. 4.

    Yu R, Kim CS, Kwon BS, Kawada T (2006) Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity 14(8):1353–1362

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34(11):907–929

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Chai J, Luo L, Hou F, Fan X, Yu J, Ma W, Tang W, Yang X, Zhu J, Kang W, Yan J (2016) Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS One 11(9):e0163634

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Farruggia C, Kim M-B, Bae M, Lee Y, Pham TX, Yang Y, Han MJ, Park Y-K, Lee J-Y (2018) Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J Nutr Biochem 62:202–209

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2: INrf2 (Keap1) signaling in oxidative stress. Free Radical Biol Med 47(9):1304–1309

    CAS  Article  Google Scholar 

  9. 9.

    Ci X, Zhou J, Lv H, Yu Q, Peng L, Hua S (2017) Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis 8(5):e2798–e2798

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Kim J, Cha Y-N, Surh Y-J (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res Fundam Mol Mech Mutagen 690(1–2):12–23

    CAS  Article  Google Scholar 

  11. 11.

    Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55(21):8516–8522

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Fung A, Hamid N, Lu J (2013) Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem 136(2):1055–1062

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Kim K-N, Heo S-J, Yoon W-J, Kang S-M, Ahn G, Yi T-H, Jeon Y-J (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol 649(1–3):369–375

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Heo S-J, Yoon W-J, Kim K-N, Ahn G-N, Kang S-M, Kang D-H, Oh C, Jung W-K, Jeon Y-J (2010) Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol 48(8–9):2045–2051

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Heo S-J, Yoon W-J, Kim K-N, Oh C, Choi Y-U, Yoon K-T, Kang D-H, Qian Z-J, Choi I-W, Jung W-K (2012) Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Chem Toxicol 50(9):3336–3342

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Kim MB, Bae M, Hu S, Kang H, Park YK, Lee JY (2019) Fucoxanthin exerts anti-fibrogenic effects in hepatic stellate cells. Biochem Biophys Res Commun 513(3):657–662

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Tan C-p, Hou Y-h (2014) First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells. Inflammation 37(2):443–450

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Zhao D, Kwon S-H, Chun YS, Gu M-Y, Yang HO (2017) Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-κB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells. Neurochem Res 42(2):667–677

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Bae M, Kim M-B, Park Y-K, Lee J-Y (2020) Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta Mol Cell Biol Lip 1865(11):158618. https://doi.org/10.1016/j.bbalip.2020.158618

    CAS  Article  Google Scholar 

  20. 20.

    Ku CS, Pham TX, Park Y, Kim B, Shin MS, Kang I (1830) Lee J (2013) Edible blue–green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-kBpathway in macrophages and splenocytes. Biochim Biophys Acta 4:2981–2988

    Google Scholar 

  21. 21.

    Lee SG, Kim B, Yang Y, Pham TX, Park Y-K, Manatou J, Koo SI, Chun OK, Lee J-Y (2014) Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J Nutr Biochem 25(4):404–411

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Park Y-K, Rasmussen HE, Ehlers SJ, Blobaum KR, Lu F, Schlegal VL, Carr TP, Lee J-Y (2008) Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kützing, a blue–green alga, via inhibition of nuclear factor-κB in RAW 264.7 macrophages. Nutr Res 28(2):83–91

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Rasmussen HE, Blobaum KR, Park Y-K, Ehlers SJ, Lu F, Lee J-Y (2008) Lipid extract of Nostoc commune var. sphaeroides Kützing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. J Nutr 138(3):476–481

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Choi ES, Yoon JJ, Han BH, Jeong DH, Lee YJ, Kang DG, Lee HS (2018) Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and NO synthesis in HUVECs. Phytomedicine 38:12–23

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Qin T, Du R, Huang F, Yin S, Yang J, Qin S, Cao W (2016) Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy. Free Radical Biol Med 92:90–99

    CAS  Article  Google Scholar 

  26. 26.

    Song YS, Park CM (2014) Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells. Food Chem Toxicol 65:70–75

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Hui Y, Chengyong T, Cheng L, Haixia H, Yuanda Z, Weihua Y (2018) Resveratrol attenuates the cytotoxicity induced by amyloid-β 1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem Res 43(2):297–305

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. 28.

    Yonekura L, Kobayashi M, Terasaki M, Nagao A (2010) Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr 140(10):1824–1831

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Hashimoto T, Ozaki Y, Taminato M, Das SK, Mizuno M, Yoshimura K, Maoka T, Kanazawa K (2009) The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br J Nutr 102(2):242–248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Canale MP, Manca di Villahermosa S, Martino G, Rovella V, Noce A, De Lorenzo A, Di Daniele N (2013) Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Intern J Endocrinol 2013:1–12

    Article  Google Scholar 

  31. 31.

    Ha AW, Na SJ, Kim WK (2013) Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet. Nutr Res Pract 7(6):475–480

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, Mccord JM, Harman D (1987) Oxygen radicals and human disease. Ann Int Med 107(4):526–545

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    de Souza LF, Barreto F, da Silva EG, Andrades ME, Guimarães ELM, Behr GA, Moreira JCF, Bernard EA (2007) Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats: involvement of high glucose and pparγ. Life Sci 81(2):153–159

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Lv H, Ren H, Wang L, Chen W, Ci X (2015) Lico A enhances Nrf2-mediated defense mechanisms against t-BHP-induced oxidative stress and cell death via Akt and ERK activation in RAW 264.7 cells. Oxid Med Cell Longev 2015:709845. https://doi.org/10.1155/2015/709845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384(3):240–242

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med 49(11):1603–1616

    CAS  Article  Google Scholar 

  38. 38.

    Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY (2016) Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother Res 30(11):1802–1808

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol Med 28(8):1303–1312

    CAS  Article  Google Scholar 

  40. 40.

    Yu R, Chen C, Mo Y-Y, Hebbar V, Owuor ED, Tan T-H, Kong A-NT (2000) Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem 275(51):39907–39913

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55(7):6076–6093

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Baiyun R, Li S, Liu B, Lu J, Lv Y, Xu J, Wu J, Li J, Lv Z, Zhang Z (2018) Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicol Environ Saf 161:655–661

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Chen C-Y, Jang J-H, Li M-H, Surh Y-J (2005) Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 331(4):993–1000

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, de Galarreta CMR, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279(10):8919–8929

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ni B, Wen L-B, Wang R, Hao H-P, Huan C-C, Wang X, Huang L, Miao J-F, Fan H-J, Mao X (2015) The involvement of FAK-PI3K-AKT-Rac1 pathway in porcine reproductive and respiratory syndrome virus entry. Biochem Biophys Res Commun 458(2):392–398

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Owen KA, Pixley FJ, Thomas KS, Vicente-Manzanares M, Ray BJ, Horwitz AF, Parsons JT, Beggs HE, Stanley ER, Bouton AH (2007) Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase. J Cell Biol 179(6):1275–1287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S (2016) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Investig 116(4):984–995

    Article  CAS  Google Scholar 

  48. 48.

    Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, Komoto A, Maoka T, Tanino Y, Kanazawa K (2012) Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr 107(11):1566–1569

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Arathi BP, Sowmya PR-R, Vijay K, Baskaran V, Lakshminarayana R (2016) Chapter 2. Biofunctionality of carotenoid metabolites: an insight into qualitative and quantitative analysis. In: Prasain JK (ed) Metabolomics: fundamentals and applications. IntechOpen, London, pp 19–42. https://doi.org/10.5772/66210

    Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A3A03032678) to M-.B. Kim and by funds from the College of Agriculture, Health and Natural Resources at the University of Connecticut to J-.Y. Lee.

Author information

Affiliations

Authors

Contributions

MBK: conducted experiments, analyzed data, and wrote the manuscript. HK, YL, and YKP: performed experiments and contributed to manuscript preparation. JYL: designed the study, directed the study, interpreted data, and contributed to manuscript preparation.

Corresponding author

Correspondence to Ji-Young Lee.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, MB., Kang, H., Li, Y. et al. Fucoxanthin inhibits lipopolysaccharide-induced inflammation and oxidative stress by activating nuclear factor E2-related factor 2 via the phosphatidylinositol 3-kinase/AKT pathway in macrophages. Eur J Nutr (2021). https://doi.org/10.1007/s00394-021-02509-z

Download citation

Keywords

  • Fucoxanthin
  • Xanthophyll
  • Inflammation
  • Oxidative stress
  • NRF2
  • PI3K
  • Macrophages