Skip to main content
Log in

Effect of ascorbic acid deficiency on catecholamine synthesis in adrenal glands of SMP30/GNL knockout mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The effect of an AA deficiency on catecholamine biosynthesis in adult mice in vivo is unknown. Therefore, we quantified catecholamine and the expression of catecholamine synthetic enzymes in the adrenal glands of senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice placed in an AA-deficient state.

Methods

At 30 days of age, mice were divided into the following 4 groups: AA (−) SMP30/GNL KO, AA (+) SMP30/GNL KO, AA (−) wild type (WT), and AA (+) WT. The AA (+) groups were given water containing 1.5 g/L AA, whereas the AA (−) groups received water without AA until the experiment ended. In addition, all mice were fed an AA-depleted diet. Catecholamine levels were measured by a liquid chromatographic method. Tyrosine hydroxylase, dopa decarboxylase, dopamine β-hydroxylase, and phenylethanolamine N-methyltransferase mRNA expression levels were measured with the quantitative real-time polymerase chain reaction (qPCR). Tyrosine hydroxylase and dopamine β-hydroxylase protein levels were quantified by Western blot analysis.

Results

In the adrenals of AA (−) SMP30/GNL KO mice, noradrenaline and adrenaline levels decreased significantly compared to other three groups of mice, although there were no significant differences in dopamine β-hydroxylase or phenylethanolamine N-methyltransferase mRNA content. Moreover, there was no significant difference in their dopamine β-hydroxylase protein levels. On the other hand, AA depletion did not affect dopamine levels in adrenal glands of mice.

Conclusion

An AA deficiency decreases the noradrenaline and adrenaline levels in adrenal glands of mice in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

AD:

Adrenaline

ANOVA:

Analysis of variance

BH3 · radical:

Trihydrobiopterin radical

BH4 :

Tetrahydrobiopterin

cDNA:

Complementary DNA

Cu+ :

Cuprous ion

Ct:

Threshold cycle

DA:

Dopamine

DBH:

Dopamine β-hydroxylase

DDC:

Dopa decarboxylase

ECD:

Electrochemical detector

EDTA:

Ethylenediaminetetraacetic acid

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GNL:

Gluconolactonase

HPLC:

High-performance liquid chromatography

KO:

Knockout

NA:

Noradrenaline

PNMT:

Phenylethanolamine N-methyltransferase

qPCR:

Quantitative real-time polymerase chain reaction

RGN:

Regucalcin

SMP30:

Senescence marker protein-30

SVCT:

Sodium-dependent vitamin C transporter

TH:

Tyrosine hydroxylase

WT:

Wild type

References

  1. Kawashima T, Ohkubo K, Fukuzumi S (2010) Radical scavenging reactivity of catecholamine neurotransmitters and the inhibition effect for DNA cleavage. J Phys Chem B 114:675–680. doi:10.1021/jp909314t

    Article  CAS  Google Scholar 

  2. Axelrod J (1974) Neurotransmitters. Sci Am 230:59–71

    Article  CAS  Google Scholar 

  3. Ziegler MG, Elayan H, Milic M, Sun P, Gharaibeh M (2012) Epinephrine and the metabolic syndrome. Curr Hypertens Rep 14:1–7. doi:10.1007/s11906-011-0243-6

    Article  CAS  Google Scholar 

  4. Nagatsu T, Stjarne L (1998) Catecholamine synthesis and release. Overview. Adv Pharmacol 42:1–14

    Article  CAS  Google Scholar 

  5. Fitzpatrick PF (1989) The metal requirement of rat tyrosine hydroxylase. Biochem Biophys Res Commun 161:211–215

    Article  CAS  Google Scholar 

  6. Frantom PA, Seravalli J, Ragsdale SW, Fitzpatrick PF (2006) Reduction and oxidation of the active site iron in tyrosine hydroxylase: kinetics and specificity. Biochemistry 45:2372–2379. doi:10.1021/bi052283j

    Article  CAS  Google Scholar 

  7. Haavik J, Martinez A, Olafsdottir S, Mallet J, Flatmark T (1992) The incorporation of divalent metal ions into recombinant human tyrosine hydroxylase apoenzymes studied by intrinsic fluorescence and 1H-NMR spectroscopy. Eur J Biochem 210:23–31

    Article  CAS  Google Scholar 

  8. Seitz G, Gebhardt S, Beck JF, Bohm W, Lode HN, Niethammer D, Bruchelt G (1998) Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH. Neurosci Lett 244:33–36

    Article  CAS  Google Scholar 

  9. Ramsey AJ, Hillas PJ, Fitzpatrick PF (1996) Characterization of the active site iron in tyrosine hydroxylase. Redox states of the iron. J Biol Chem 271:24395–24400

    Article  CAS  Google Scholar 

  10. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554. doi:10.1074/jbc.M302227200

    Article  CAS  Google Scholar 

  11. Haavik J, Blau N, Thony B (2008) Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 29:891–902. doi:10.1002/humu.20700

    Article  CAS  Google Scholar 

  12. Fortin D, Coulon JF, Roberge AG (1993) Comparative study of biochemical parameters and kinetic properties of dopamine-β-hydroxylase activity from cat and rat adrenals. Comp Biochem Physiol B 104:567–575

    CAS  Google Scholar 

  13. Evans JP, Ahn K, Klinman JP (2003) Evidence that dioxygen and substrate activation are tightly coupled in dopamine β-monooxygenase. Implications for the reactive oxygen species. J Biol Chem 278:49691–49698. doi:10.1074/jbc.M300797200

    Article  CAS  Google Scholar 

  14. Huyghe BG, Klinman JP (1991) Activity of membranous dopamine β-monooxygenase within chromaffin granule ghosts. Interaction with ascorbate. J Biol Chem 266:11544–11550

    CAS  Google Scholar 

  15. Alexandre B, Humberto F, Learmonth DA, Patrício S (2009) Dopamine β-monooxygenase: mechanism, substrates and inhibitors. Curr Enzyme Inhib 5:27–43

    Article  Google Scholar 

  16. Koh DS, Hille B (1997) Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry. Proc Natl Acad Sci USA 94:1506–1511

    Article  CAS  Google Scholar 

  17. Horio F, Ozaki K, Yoshida A, Makino S, Hayashi Y (1985) Requirement for ascorbic acid in a rat mutant unable to synthesize ascorbic acid. J Nutr 115:1630–1640

    CAS  Google Scholar 

  18. Lane DJ, Lawen A (2009) Ascorbate and plasma membrane electron transport-enzymes vs efflux. Free Radic Biol Med 47:485–495

    Article  CAS  Google Scholar 

  19. Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142

    CAS  Google Scholar 

  20. Nakashima Y, Suzue R, Sanada H, Kawada S (1972) Effect of ascorbic acid on tyrosine hydroxylase activity in vivo. Arch Biochem Biophys 152:515–520

    Article  CAS  Google Scholar 

  21. Kawai K, Ito H, Kubota H, Takemori K, Makino S, Horio F (2003) Changes in catecholamine metabolism by ascorbic acid deficiency in spontaneously hypertensive rats unable to synthesize ascorbic acid. Life Sci 72:1717–1732

    Article  CAS  Google Scholar 

  22. Nakashima Y, Suzue R, Sanada H, Kawada S (1970) Effect of ascorbic acid on hydroxylase activity. I. Stimulation of tyrosine hydroxylase and tryptophan-5-hydroxylase activities by ascorbic acid. J Vitaminol 16:276–280

    Article  CAS  Google Scholar 

  23. Bornstein SR, Yoshida-Hiroi M, Sotiriou S, Levine M, Hartwig HG, Nussbaum RL, Eisenhofer G (2003) Impaired adrenal catecholamine system function in mice with deficiency of the ascorbic acid transporter (SVCT2). FASEB J 17:1928–1930. doi:10.1096/fj.02-1167fje

    CAS  Google Scholar 

  24. Savini I, Rossi A, Pierro C, Avigliano L, Catani MV (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34:347–355. doi:10.1007/s00726-007-0555-7

    Article  CAS  Google Scholar 

  25. Fujita T, Uchida K, Maruyama N (1992) Purification of senescence marker protein-30 (SMP30) and its androgen-independent decrease with age in the rat liver. Biochim Biophys Acta 1116:122–128

    Article  CAS  Google Scholar 

  26. Yamaguchi M, Yamamoto T (1978) Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull 26:1915–1918

    Article  CAS  Google Scholar 

  27. Kondo Y, Inai Y, Sato Y, Handa S, Kubo S, Shimokado K, Goto S, Nishikimi M, Maruyama N, Ishigami A (2006) Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci USA 103:5723–5728

    Article  CAS  Google Scholar 

  28. Ishigami A, Fujita T, Handa S, Shirasawa T, Koseki H, Kitamura T, Enomoto N, Sato N, Shimosawa T, Maruyama N (2002) Senescence marker protein-30 knockout mouse liver is highly susceptible to tumor necrosis factor-α- and Fas-mediated apoptosis. Am J Pathol 161:1273–1281

    Article  CAS  Google Scholar 

  29. Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N, Fujinawa H, Mori T, Ohta M, Obayashi H, Maruyama N, Ishigami A (2008) Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun 375:346–350

    Article  CAS  Google Scholar 

  30. Kondo Y, Sasaki T, Sato Y, Amano A, Aizawa S, Iwama M, Handa S, Shimada N, Fukuda M, Akita M, Lee J, Jeong KS, Maruyama N, Ishigami A (2008) Vitamin C depletion increases superoxide generation in brains of SMP30/GNL knockout mice. Biochem Biophys Res Commun 377:291–296

    Article  CAS  Google Scholar 

  31. Ishikawa Y, Hashizume K, Kishimoto S, Tezuka Y, Nishigori H, Yamamoto N, Kondo Y, Maruyama N, Ishigami A, Kurosaka D (2012) Effect of vitamin C depletion on UVR-B induced cataract in SMP30/GNL knockout mice. Exp Eye Res 94:85–89. doi:10.1016/j.exer.2011.11.010

    Article  CAS  Google Scholar 

  32. Koike K, Kondo Y, Sekiya M, Sato Y, Tobino K, Iwakami SI, Goto S, Takahashi K, Maruyama N, Seyama K, Ishigami A (2010) Complete lack of vitamin C intake generates pulmonary emphysema in senescence marker protein-30 knockout mice. Am J Physiol Lung Cell Mol Physiol 298:L784–L792. doi:00256.2009

    Article  CAS  Google Scholar 

  33. Arai KY, Sato Y, Kondo Y, Kudo C, Tsuchiya H, Nomura Y, Ishigami A, Nishiyama T (2009) Effects of vitamin C deficiency on the skin of the senescence marker protein-30 (SMP30) knockout mouse. Biochem Biophys Res Commun 385:478–483

    Article  CAS  Google Scholar 

  34. Sato Y, Arai KY, Nishiyama T, Nomura Y, Kishimoto Y, Aizawa S, Maruyama N, Ishigami A (2012) Ascorbic acid deficiency leads to epidermal atrophy and UVB-induced skin pigmentation in SMP30/GNL knockout hairless mice. J Invest Dermatol 132:2112–2115. doi:10.1038/jid.2012.105

    Article  CAS  Google Scholar 

  35. Amano A, Aigaki T, Maruyama N, Ishigami A (2010) Ascorbic acid depletion enhances expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice. Arch Biochem Biophys 496:38–44

    Article  CAS  Google Scholar 

  36. Furusawa H, Sato Y, Tanaka Y, Inai Y, Amano A, Iwama M, Kondo Y, Handa S, Murata A, Nishikimi M, Goto S, Maruyama N, Takahashi R, Ishigami A (2008) Vitamin C is not essential for carnitine biosynthesis in vivo: verification in vitamin C-depleted senescence marker protein-30/gluconolactonase knockout mice. Biol Pharm Bull 31:1673–1679

    Article  CAS  Google Scholar 

  37. Iwama M, Shimokado K, Maruyama N, Ishigami A (2011) Time course of vitamin C distribution and absorption after oral administration in SMP30/GNL knockout mice. Nutrition 27:471–478. doi:10.1016/j.nut.2010.04.010

    Article  CAS  Google Scholar 

  38. Sato Y, Uchiki T, Iwama M, Kishimoto Y, Takahashi R, Ishigami A (2010) Determination of dehydroascorbic acid in mouse tissues and plasma by using tris(2-carboxyethyl)phosphine hydrochloride as reductant in metaphosphoric acid/ethylenediaminetetraacetic acid solution. Biol Pharm Bull 33:364–369

    Article  CAS  Google Scholar 

  39. Tsunoda M (2006) Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 386:506–514. doi:10.1007/s00216-006-0675-z

    Article  CAS  Google Scholar 

  40. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.99990003-2697(87)90021-2

    Article  CAS  Google Scholar 

  41. Aalinkeel R, Hu Z, Nair BB, Sykes DE, Reynolds JL, Mahajan SD, Schwartz SA (2010) Genomic analysis highlights the role of the JAK-STAT Signaling in the anti-proliferative effects of dietary flavonoid-‘Ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med 7:177–187

    Article  Google Scholar 

  42. Zhu W, Qin W, Atasoy U, Sauter ER (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89

    Article  Google Scholar 

  43. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  44. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  Google Scholar 

  45. Tsuchimochi H, Nakamoto T, Matsukawa K (2010) Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats. Exp Physiol 95:93–106

    Article  CAS  Google Scholar 

  46. Markoglou N, Wainer IW (2001) Synthesis and characterization of immobilized dopamine β-hydroxylase in membrane-bound and solubilized formats. J Biochem Biophys Methods 48:61–75

    Article  CAS  Google Scholar 

  47. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    CAS  Google Scholar 

  48. Levine M, Morita K, Heldman E, Pollard HB (1985) Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla. J Biol Chem 260:15598–15603

    CAS  Google Scholar 

  49. Sears ML (1969) Vitamin C as a requirement for the storage of norepinephrine by the iris. Biochem Pharmacol 18:253–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Phyllis Minick for the excellent English editorial assistance. Vitamin C powder was kindly provided by DSM Nutrition Japan. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 24380073 (A.I.) and 23590441 (N.M.) and by JSPS Research Fellowship for Young Scientists Grant Number 00234778 (A.A.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihito Ishigami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amano, A., Tsunoda, M., Aigaki, T. et al. Effect of ascorbic acid deficiency on catecholamine synthesis in adrenal glands of SMP30/GNL knockout mice. Eur J Nutr 53, 177–185 (2014). https://doi.org/10.1007/s00394-013-0515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0515-9

Keywords

Navigation