Advertisement

Climate Dynamics

, Volume 44, Issue 1–2, pp 559–583 | Cite as

Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions

  • Bohua HuangEmail author
  • Jieshun Zhu
  • Lawrence Marx
  • Xingren Wu
  • Arun Kumar
  • Zeng-Zhen Hu
  • Magdalena A. Balmaseda
  • Shaoqing Zhang
  • Jian Lu
  • Edwin K. Schneider
  • James L. Kinter III
Article
Part of the following topical collections:
  1. Topical Collection on Climate Forecast System Version 2 (CFSv2)

Abstract

There are potential advantages to extending operational seasonal forecast models to predict decadal variability but major efforts are required to assess the model fidelity for this task. In this study, we examine the North Atlantic climate simulated by the NCEP Climate Forecast System, version 2 (CFSv2), using a set of ensemble decadal hindcasts and several 30-year simulations initialized from realistic ocean–atmosphere states. It is found that a substantial climate drift occurs in the first few years of the CFSv2 hindcasts, which represents a major systematic bias and may seriously affect the model’s fidelity for decadal prediction. In particular, it is noted that a major reduction of the upper ocean salinity in the northern North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) significantly. This freshening is likely caused by the excessive freshwater transport from the Arctic Ocean and weakened subtropical water transport by the North Atlantic Current. A potential source of the excessive freshwater is the quick melting of sea ice, which also causes unrealistically thin ice cover in the Arctic Ocean. Our sensitivity experiments with adjusted sea ice albedo parameters produce a sustainable ice cover with realistic thickness distribution. It also leads to a moderate increase of the AMOC strength. This study suggests that a realistic freshwater balance, including a proper sea ice feedback, is crucial for simulating the North Atlantic climate and its variability.

Keywords

Climate drift Decadal prediction Atlantic meridional overturning circulation North Atlantic salinity Arctic sea ice 

Notes

Acknowledgments

We thank Dr. J. Shukla for his support and advice on this project. We also thank Dr. S. Corti and two anonymous reviewers for their constructive comments and suggestions. The GMU/COLA scientists are supported by grants from NSF (ATM-0830068), NOAA (NA09OAR4310058), and NASA (NNX09AN50G). We acknowledge NCEP’s assistance in porting the CFSv2 code to the computing platforms at the NASA Advanced Supercomputing (NAS) division. We are also grateful to ECMWF for providing the COMBINE-NEMOVAR ocean reanalysis. Computing resources respectively provided by NAS and the Extreme Science and Engineering Discovery Environment (XSEDE) are gratefully acknowledged.

References

  1. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington pp 184Google Scholar
  2. Balmaseda MA, Mogensen K, Molteni F, Weaver AT (2010) The NEMOVAR-COMBINE ocean re-analysis. COMBINE Technical Report No. 1. Available at: www.combine-project.eu/fileadmin/user_upload/combine/tech_report/COMBINE_TECH_REP_n01.pdf
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161CrossRefGoogle Scholar
  4. Bombardi RJ et al (2014) Evaluation of the CFSv2 CMIP5 decadal predictions. Clim Dyn. doi: 10.1007/s00382-014-2360-9
  5. Chen F, Mitchell K, Schaake J, Xue Y, Pan H-L, Koren V, Duan QY, Ek M, Betts A (1996) Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101:7251–7268. doi: 10.1029/95JD02165 CrossRefGoogle Scholar
  6. Corti S, Weisheimer A, Palmer TN, Doblas-Reyes FJ, Magnusson L (2012) Reliability of decadal predictions. Geophys Res Lett 39:L21712. doi: 10.1029/2012GL053354 CrossRefGoogle Scholar
  7. da Silva AM, Young CC, Levitus S (1994) Atlas of surface marine data 1994, Volume 1: Algorithms and procedures. NOAA Atlas NESDIS 6. US Department of Commerce, NOAA, NESDIS, pp 73Google Scholar
  8. Danabasoglu G, Large WG, Briegleb BP (2010) Climate impacts of parameterized Nordic Sea overflows. J Geophys Res 115:C11005CrossRefGoogle Scholar
  9. Danabasoglu G, Yeager SG, Kwon Y-O, Tribbia JJ, Phillips AS, Hurrell JW (2012) Variability of the Atlantic meridional overturning circulation in CCSM4. J Clim 25:5153–5172CrossRefGoogle Scholar
  10. Danabasoglu G et al (2014) North Atlantic simulations in coordinated Ocean-ice reference experiments phase II (CORE-II) Part I: mean states. Ocean Model 73:76–107CrossRefGoogle Scholar
  11. Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  12. Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715. doi: 10.1038/ncomms2704 CrossRefGoogle Scholar
  13. Ek M, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J Geophys Res 108:8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  14. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  15. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the world Ocean circulation experiment. J Clim 16:696–705CrossRefGoogle Scholar
  16. García-Serrano J, Doblas-Reyes FJ, Coelho CAS (2012) Understanding Atlantic multi-decadal variability prediction skill. Geophys Res Lett 39:L18708. doi: 10.1029/2012GL053283 CrossRefGoogle Scholar
  17. Gnanadesikan A et al (2006) GFDL’s CM2 global coupled climate models. Part II: the baseline ocean simulation. J Clim 19:675–696CrossRefGoogle Scholar
  18. Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) Technical guide to MOM4. GFDL Ocean group Technical Report 5, NOAA/Geophysical Fluid Dynamics Laboratory. Available at www.gfdl.noaa.gov/*fms
  19. Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanadesikan A, Hurlin WJ, Lee H-C, Liang Z, Palter JB, Samuels BL, Wittenberg AT, Wyman B, Yin J, Zadeh N (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24:3520–3544. doi: 10.1175/2011JCLI3964.1 CrossRefGoogle Scholar
  20. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649–653. doi: 10.1038/NCLIMATE1863 CrossRefGoogle Scholar
  21. Hazeleger W, Wouters B, van Oldenborgh GJ, Corti S, Palmer T, Smith D, Dunstone N, Kroeger J, Pohlmann H, von Storch JS (2013) Predicting multiyear North Atlantic Ocean variability. J Geophys Res 118:1087–1098. doi: 10.1002/jgrc.20117 CrossRefGoogle Scholar
  22. Hu Z-Z, Kumar A, Huang B, Wang W, Zhu J, Wen C (2013) Prediction skill of monthly SST in the North Atlantic Ocean in NCEP climate forecast system version 2. Clim Dyn 40:2745–2759. doi: 10.1007/s00382-012-1431-z CrossRefGoogle Scholar
  23. Huang B, Xue Y, Kumar A, Behringer DW (2012a) AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Clim Dyn 38:513–525. doi: 10.1007/s00382-011-1035-z CrossRefGoogle Scholar
  24. Huang B, Hu Z-Z, Schneider EK, Wu Z, Xue Y, Klinger B (2012b) Influences of tropical-extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Clim Dyn 39:531–555CrossRefGoogle Scholar
  25. Huang B, Zhang S, Zhu J, Z.-Z. Hu Z-Z (2013) Multidecadal oscillation of the Atlantic Meridional Overturning Circulation in CMIP5 models. U.S. AMOC/U.K. RAPID International Science Meeting, 16–19 July 2013, Baltimore, Maryland. http://www.usclivar.org/sites/default/files/meetings/Huang_AMOC2013_poster.pdf
  26. Hunke EC, Dukowicz JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867CrossRefGoogle Scholar
  27. Ji M, Kumar A, Leetmaa A (1994) A multiseason climate forecast system at the national meteorological center. Bull Amer Meteor Soc 75:569–578CrossRefGoogle Scholar
  28. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J Clim 24:2429–2449CrossRefGoogle Scholar
  29. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  30. Kim H-M, Webster PJ, Curry JA (2012) Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the northern hemisphere winter. Clim Dyn 39:2957–2973. doi: 10.1007/s00382-012-1364-6 CrossRefGoogle Scholar
  31. Knight JT, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.29/2005GL024233 CrossRefGoogle Scholar
  32. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of the Atlantic sector climate on decadal time scales. J Clim 19:5971–5987CrossRefGoogle Scholar
  33. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Print Office, Washington D.C pp 184Google Scholar
  34. Lumpkin R, Garraffo Z (2005) Evaluating the decomposition of tropical Atlantic drifter observations. J Atmos Oceanic Tech 22:1403–1415CrossRefGoogle Scholar
  35. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562CrossRefGoogle Scholar
  36. Madec G (2008) NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version. Note du Pôle de modélisation 27. Institut Pierre-Simon Laplace: ParisGoogle Scholar
  37. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37:1–64CrossRefGoogle Scholar
  38. Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci 5:171–180. doi: 10.1038/ngeo1391 CrossRefGoogle Scholar
  39. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523CrossRefGoogle Scholar
  40. Merryfield WJ, Lee W-S, Wang W, Chen M, Kumar A (2013) Multi-system seasonal predictions of Arctic sea ice. Geophys Res Lett 40:1551–1556. doi: 10.1002/grl.50317 CrossRefGoogle Scholar
  41. Mogensen K, Balmaseda MA, Weaver AT (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech, Memo 668Google Scholar
  42. Molteni F, Stockdale T, Balmaseda MA, Balsamo G, Buizza R, Ferranti L, Magnusson L, Mogensen K, Palmer T, Vitart F (2011) The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo 656. Available at www.ecmwf.int/publications/library/do/references/show?id=90277
  43. Moorthi S, Pan H-L, Caplan P (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Technical Procedures Bulletin 484: 14 pp. Available at www.nws.noaa.gov/om/tpb/484.htm
  44. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Amer Meteor Soc 89:459–470CrossRefGoogle Scholar
  45. Perovich D, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107:8044. doi: 10.1029/2000JC000438 CrossRefGoogle Scholar
  46. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  47. Romanova V, Köhl A, Stammer D, Klepp C, Andersson A, Bakan S (2010) Sea surface freshwater flux estimates from GECCO, HOAPS and NCEP. Tellus 62A:435–452CrossRefGoogle Scholar
  48. Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  49. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Met Soc 91:1015–1057CrossRefGoogle Scholar
  50. Saha S et al (2014) The NCEP coupled forecast system, version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  51. Shukla J (2009) Seamless prediction of weather and climate: A new paradigm for modeling and prediction research. NOAA climate test bed joint seminar series, Camp Spring, MD. 10 Feb 2009. Science and Technology Infusion Climate Bulletin, 8 pp. Available at: www.nws.noaa.gov/ost/climate/STIP/FY09CTBSeminars/shukla_021009.pdf
  52. Stockdale TN, Anderson DLT, Alves JO, Balmaseda MA (1998) Global seasonal rainfall forecasts with a coupled ocean atmosphere model. Nature 392:370–373CrossRefGoogle Scholar
  53. Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471. doi: 10.1007/s00382-010-0947-3 CrossRefGoogle Scholar
  54. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning stream function for the global ocean. J Clim 16:3213–3226CrossRefGoogle Scholar
  55. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  56. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim Dyn 38:1263–1280. doi: 10.1007/s00382-012-1313-4 CrossRefGoogle Scholar
  57. Wang W, Chen M, Kumar A (2013) Seasonal prediction of Arctic Sea ice extent from a coupled dynamical forecast system. Mon Wea Rev 141:1375–1394CrossRefGoogle Scholar
  58. Winton M (2000) A reformulated three-layer sea ice model. J Atmos Oceanic Technol 17:525–531CrossRefGoogle Scholar
  59. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558CrossRefGoogle Scholar
  60. Zhang JL, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Wea Rev 131:845–861CrossRefGoogle Scholar
  61. Zhu J, Huang B, Balmaseda MA (2012a) An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Clim Dyn 39:1001–1020. doi: 10.1007/s00382-011-1189-8 CrossRefGoogle Scholar
  62. Zhu J, Huang B, Marx L, Kinter JL, Balmaseda MA, Zhang R-H, Hu Z-Z (2012b) Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophy Res Lett 39:L09602. doi: 10.1029/2012GL051503 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bohua Huang
    • 1
    • 2
    Email author
  • Jieshun Zhu
    • 2
  • Lawrence Marx
    • 2
  • Xingren Wu
    • 3
  • Arun Kumar
    • 4
  • Zeng-Zhen Hu
    • 4
  • Magdalena A. Balmaseda
    • 5
  • Shaoqing Zhang
    • 6
  • Jian Lu
    • 7
  • Edwin K. Schneider
    • 1
    • 2
  • James L. Kinter III
    • 1
    • 2
  1. 1.Department of Atmospheric, Oceanic and Earth Sciences, College of ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Ocean-Land-Atmosphere StudiesFairfaxUSA
  3. 3.Environmental Modeling CenterNational Centers for Environmental Prediction/NOAACollege ParkUSA
  4. 4.Climate Prediction CenterNational Centers for Environmental Prediction/NOAACollege ParkUSA
  5. 5.European Centre for Medium-Range Weather ForecastsReadingUK
  6. 6.Geophysical Fluid Dynamics Laboratory/NOAAPrinceton UniversityPrincetonUSA
  7. 7.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations