Advertisement

Climate Dynamics

, Volume 44, Issue 1–2, pp 543–557 | Cite as

Evaluation of the CFSv2 CMIP5 decadal predictions

  • Rodrigo J. BombardiEmail author
  • Jieshun Zhu
  • Lawrence Marx
  • Bohua Huang
  • Hua Chen
  • Jian Lu
  • Lakshmi Krishnamurthy
  • V. Krishnamurthy
  • Ioana Colfescu
  • James L. KinterIII
  • Arun Kumar
  • Zeng-Zhen Hu
  • Shrinivas Moorthi
  • Patrick Tripp
  • Xingren Wu
  • Edwin K. Schneider
Article
Part of the following topical collections:
  1. Topical Collection on Climate Forecast System Version 2 (CFSv2)

Abstract

Retrospective decadal forecasts were undertaken using the Climate Forecast System version 2 (CFSv2) as part of Coupled Model Intercomparison Project 5. Decadal forecasts were performed separately by the National Center for Environmental Prediction (NCEP) and by the Center for Ocean-Land-Atmosphere Studies (COLA), with the centers using two different analyses for the ocean initial conditions the NCEP Climate Forecast System Reanalysis (CFSR) and the NEMOVAR-COMBINE analysis. COLA also examined the sensitivity to the inclusion of forcing by specified volcanic aerosols. Biases in the CFSv2 for both sets of initial conditions include cold midlatitude sea surface temperatures, and rapid melting of sea ice associated with warm polar oceans. Forecasts from the NEMOVAR-COMBINE analysis showed strong weakening of the Atlantic Meridional Overturning Circulation (AMOC), eventually approaching the weaker AMOC associated with CFSR. The decadal forecasts showed high predictive skill over the Indian, the western Pacific, and the Atlantic Oceans and low skill over the central and eastern Pacific. The volcanic forcing shows only small regional differences in predictability of surface temperature at 2m (T2m) in comparison to forecasts without volcanic forcing, especially over the Indian Ocean. An ocean heat content (OHC) budget analysis showed that the OHC has substantial memory, indicating potential for the decadal predictability of T2m; however, the model has a systematic drift in global mean OHC. The results suggest that the reduction of model biases may be the most productive path towards improving the model’s decadal forecasts.

Keywords

Decadal forecast and prediction Skill Biases CFSv2 CMIP5 Volcanic forcing 

Notes

Acknowledgments

The authors thank the support from the National Science Foundation (NSF 0830068), the National Oceanic and Atmospheric Administration (NOAA NA09OAR4310058), and the National Aeronautics and Space Administration (NASA NNX09AN50G). We thank Dr. Magdalena A. Balmaseda, Dr. Chris Bretherton, and the two anonymous reviewers for their suggestions for the improvement of this manuscript. We also thank Dr. Magdalena A. Balmaseda for providing the COMBINE-NV initial conditions for the CFS_v2. We thank the ECMWF for providing the COMBINE-NV reanalysis data.

References

  1. Balmaseda MA, Mogensen K, Molteni F, Weaver AT (2010) The NEMOVAR-COMBINE ocean reanalysis. COMBINE technical report no. 1, 11 p. (Available at http://www.combinep)
  2. Balmaseda MA, Trenberth KE, Källén E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:1754–1759. doi: 10.1002/grl.50382 CrossRefGoogle Scholar
  3. Bellucci A, Gualdi S, Masina S et al (2012) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40:1483–1497. doi: 10.1007/s00382-012-1468-z CrossRefGoogle Scholar
  4. Bellucci A, Haarsma R, Gualdi S et al (2014) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn. doi: 10.1007/s00382-014-2164-y Google Scholar
  5. Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y et al (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715. doi: 10.1038/ncomms2704 CrossRefGoogle Scholar
  6. Ek MB, Mitchell KE, Lin Y et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  7. García-Serrano J, Doblas-Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn 39:2025–2040. doi: 10.1007/s00382-012-1413-1 CrossRefGoogle Scholar
  8. Goddard L, Kumar A, Solomon A et al (2012) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn. doi: 10.1007/s00382-012-1481-2 Google Scholar
  9. Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean group technical report no. 5, p 281Google Scholar
  10. Guemas V, Doblas-Reyes FJ, Lienert F et al (2012) Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J Geophys Res Atmos 117:D20111. doi: 10.1029/2012JD018004 CrossRefGoogle Scholar
  11. Guemas V, Corti S, García-Serrano J et al (2013) The Indian Ocean: the region of highest skill worldwide in decadal climate prediction*. J Clim 26:726–739. doi: 10.1175/JCLI-D-12-00049.1 CrossRefGoogle Scholar
  12. Huang B, Hu Z-Z, Schneider EK et al (2011) Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Clim Dyn 39:531–555. doi: 10.1007/s00382-011-1258-z CrossRefGoogle Scholar
  13. Huang B, Zhu J, Marx L et al (2014) Climate drift of AMOC, North Atlantic salinity and Arctic sea ice in CFSv2 decadal predictions. Clim Dyn (submitted)Google Scholar
  14. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  15. Keenlyside NS, Latif M, Jungclaus J et al (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  16. Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett 39. doi: 10.1029/2012GL051644
  17. Kirtman B, Power SB, Adedoyin JA et al (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  18. Krishnamurthy L, Krishnamurthy V (2013) Decadal scale oscillations and trend in the Indian monsoon rainfall. Clim Dyn 43:319–331. doi: 10.1007/s00382-013-1870-1 CrossRefGoogle Scholar
  19. Kumar A, Chen M, Zhang L et al (2012) An Analysis of the Nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon Weather Rev 140:3003–3016. doi: 10.1175/MWR-D-11-00335.1 CrossRefGoogle Scholar
  20. Meehl GA, Goddard L, Boer G et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267. doi: 10.1175/BAMS-D-12-00241.1 CrossRefGoogle Scholar
  21. Murphy AH (1988) Skill scores based on the mean squared error and their relationships to the correlation coefficient. Mon Weather Rev 116:2417–2424CrossRefGoogle Scholar
  22. Pohlmann H, Jungclaus JH, Köhl A et al (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938. doi: 10.1175/2009JCLI2535.1 CrossRefGoogle Scholar
  23. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219. doi: 10.1029/1998RG000054 CrossRefGoogle Scholar
  24. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  25. Saha S, Moorthi S, Wu X et al (2014) The NCEP climate forecast system version 2. J Clim. doi: 10.1175/JCLI-D-12-00823.1 Google Scholar
  26. Smith DM, Cusack S, Colman AW et al (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  27. Smith DM, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41:3325–3338. doi: 10.1007/s00382-013-1683-2 CrossRefGoogle Scholar
  28. Swingedouw D, Mignot J, Labetoulle S et al (2012) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40:2381–2399. doi: 10.1007/s00382-012-1516-8 CrossRefGoogle Scholar
  29. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  30. Trenberth KE (2002) Evolution of El Niño–southern oscillation and global atmospheric surface temperatures. J Geophys Res 107:4065. doi: 10.1029/2000JD000298 CrossRefGoogle Scholar
  31. Van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280. doi: 10.1007/s00382-012-1313-4 CrossRefGoogle Scholar
  32. Weisheimer A, Doblas-Reyes FJ, Palmer TN et al (2009) ENSEMBLES: a new multi-model ensemble for seasonal-to-annual predictions—skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36:L21711. doi: 10.1029/2009GL040896 CrossRefGoogle Scholar
  33. Xue Y, Huang B, Hu Z-Z et al (2010) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37:2511–2539. doi: 10.1007/s00382-010-0954-4 CrossRefGoogle Scholar
  34. Xue Y, Chen M, Kumar A et al (2013) Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP climate forecast system version 2. J Clim 26:5358–5378. doi: 10.1175/JCLI-D-12-00600.1 CrossRefGoogle Scholar
  35. Yeager S, Karspeck A, Danabasoglu G et al (2012) A decadal prediction case study: late twentieth-century North Atlantic Ocean heat content. J Clim 25:5173–5189. doi: 10.1175/JCLI-D-11-00595.1 CrossRefGoogle Scholar
  36. Zhu J, Huang B, Balmaseda MA (2012a) An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Clim Dyn 39:1001–1020. doi: 10.1007/s00382-011-1189-8 CrossRefGoogle Scholar
  37. Zhu J, Huang B, Marx L et al (2012b) Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys Res Lett 39:L09602. doi: 10.1029/2012GL051503 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rodrigo J. Bombardi
    • 1
    Email author
  • Jieshun Zhu
    • 2
  • Lawrence Marx
    • 2
  • Bohua Huang
    • 1
    • 2
  • Hua Chen
    • 1
  • Jian Lu
    • 4
  • Lakshmi Krishnamurthy
    • 1
  • V. Krishnamurthy
    • 2
  • Ioana Colfescu
    • 1
  • James L. KinterIII
    • 1
    • 2
  • Arun Kumar
    • 3
  • Zeng-Zhen Hu
    • 3
  • Shrinivas Moorthi
    • 3
  • Patrick Tripp
    • 3
  • Xingren Wu
    • 3
  • Edwin K. Schneider
    • 1
    • 2
  1. 1.Department of Atmospheric, Oceanic, and Earth Sciences, College of ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Ocean-Land-Atmosphere StudiesInstitute of Global Environment and SocietyCalvertonUSA
  3. 3.National Centers for Environmental PredictionCollege ParkUSA
  4. 4.Atmospheric Sciences & Global Change DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations