Skip to main content

Advertisement

Log in

Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A meteorological reanalysis dataset and experiments of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM) are used to study the boreal winter season teleconnections in the Pacific-North America region and in the stratosphere generated by Central Pacific and Eastern Pacific El Niño. In the reanalysis data, the sign of the North Pacific and stratospheric response to Central Pacific El Niño is sensitive to the composite size, the specific Central Pacific El Niño index used, and the month or seasonal average that is examined, highlighting the limitations of the short observational record. Long model integrations suggest that the response to the two types of El Niño are similar in both the extratropical troposphere and stratosphere. Namely, both Central Pacific and Eastern Pacific El Niño lead to a deepened North Pacific low and a weakened polar vortex, and the effects are stronger in late winter than in early winter. However, the long experiments do indicate some differences between the two types of El Niño events regarding the latitude of the North Pacific trough, the early winter polar stratospheric response, surface temperature and precipitation over North America, and globally averaged surface temperature. These differences are generally consistent with, though smaller than, those noted in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res (Oceans) 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Barnston AG, Kumar A, Goddard L, Hoerling MP (2005) Improving seasonal prediction practices through attribution of climate variability. Bull Am Meteorol Soc 86:59–72. doi:10.1175/BAMS-86-1-59

    Article  Google Scholar 

  • Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical sst anomalies throughout the Indo-Pacific basin. J Clim 15:3427-3442

    Article  Google Scholar 

  • Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM, Scaife AA (2009) Stratospheric communication of El Niño teleconnections to European winter. J Clim 22:4083-+. doi:10.1175/2009JCLI2717.1

    Article  Google Scholar 

  • Cagnazzo C, Manzini E, Calvo N, Douglass A, Akiyoshi H, Bekki S, Chipperfield M, Dameris M, Deushi M, Fischer AM, Garny H, Gettelman A, Giorgetta MA, Plummer D, Rozanov E, Shepherd TG, Shibata K, Stenke A, Struthers H, Tian W (2009) Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos Chem Phys 9:8935–8948. doi:10.5194/acp-9-8935-2009

  • Calvo N, Giorgetta MA, Garcia-Herrera R, Manzini E (2009) Nonlinearity of the combined warm enso and qbo effects on the northern hemisphere polar vortex in maecham5 simulations. J Geophys Res 114:D13109. doi:10.1029/2008JD011445

    Article  Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J Clim 20:449-+. doi:10.1175/JCLI3996.1

    Article  Google Scholar 

  • Feng J, Wang L, Chen W, Fong SK, Leong KC (2010) Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J Geophys Res 115. doi:10.1029/2010JD014761

  • Frederiksen JS, Branstator G (2005) Seasonal variability of teleconnection patterns. J Atmos Sci 62:1346–1365. doi:10.1175/JAS3405.1

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2007) Effects of the El-Nino southern oscillation and the Quasi-Biennial oscillation on polar temperatures in the stratosphere. J Geophys Res Atmos 112:D19112. doi:10.1029/2007JD008481

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res Atmos 113. doi:10.1029/2008JD009920

  • Garfinkel CI, Hartmann DL (2010) Influence of the quasi-biennial oscillation on the North Pacific and El-niño teleconnections. J Geophys Res 115:D20116. doi:10.1029/2010JD014181

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices. J Clim 23. doi:10.1175/2010JCLI3010.1

  • Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM (2012a) Why might SSWs occur with similar frequency in El Niño and La Niña winters? J Geophys Res. doi:10.1029/2012JD017777

  • Garfinkel CI, Waugh DW, Gerber EP (2012b) Effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J Clim. doi:10.1175/JCLI-D-12-00301.1

  • Geisler JE, Blackmon ML, Bates GT, Muñoz S (1985) Sensitivity of January climate response to the magnitude and position of equatorial Pacific Sea surface temperature anomalies. J Atmos Sci 42:1037–1049. doi:10.1175/1520-0469(1985)042<1037:SOJCRT>2.0.CO;2

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J R Meteorol Soc 106:447–462. doi:10.1002/qj.49710644905

    Article  Google Scholar 

  • Graf H, Zanchettin D (2012) Central Pacific El Nino, the subtropical bridge, and Eurasian climate. J Geophys Res 117. doi:10.1029/2011JD016493

  • Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the southern oscillation. J Clim 5:577–593. doi:10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2

    Article  Google Scholar 

  • Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20121. doi:10.1029/2011JD016001

  • Held IM, Lyons SW, Nigam S (1989) Transients and the extratropical response to El Nino. J Atmos Sci 46(1):163–174

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Nina, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary scale atmospheric phenomena associated with the southern oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1671. doi:10.1175/1520-0469(1993)050

    Article  Google Scholar 

  • Hoskins BJ, Karoly D (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hu Z, Kumar A, Jha B, Wang W, Huang B, Huang B (2011) An analysis of warm pool and cold tongue el niños: airsea coupling processes, global influences, and recent trends. Clim Dyn 1–19 (ISSN 0930-7575). doi:10.1007/s00382-011-1224-9

  • Hurwitz MM, Newman PA, Oman LD, Molod AM (2011a) Response of the Antarctic stratosphere to two types of El Niño events. J Atmos Sci 68:812–822. doi:10.1175/2011JAS3606.1

    Article  Google Scholar 

  • Hurwitz MM, Song I-S, Oman LD, Newman PA, Molod AM, Frith SM, Nielsen JE (2011b) Response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atmos Chem Phys 11:9659–9669. doi:10.5194/acp-11-9659-2011

    Article  Google Scholar 

  • Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of north Pacific Sea surface temperatures on the Arctic winter climate. J Geophys Res. doi:10.1029/2012JD017819

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nature Geo 2:32–36. doi:10.1038/ngeo381

    Article  Google Scholar 

  • Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319. doi:10.1175/1520-0469(1995)052

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two Types of El Niño Events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Kumar A, Leetmaa A, Ji M (1994) Simulations of atmospheric variability induced by sea surface temperatures and implications for global warming. Science 266:632–634. doi:10.1126/science.266.5185.632

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim 17:2584–2596

    Article  Google Scholar 

  • Mann ME, Park J (1994) Global-scale modes of surface temperature variability on interannual to century timescales. J Geophys Res 99:25819–25834. doi:10.1029/94JD02396

    Article  Google Scholar 

  • Manzini E, Giorgetta MA, Kornbluth L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881

    Article  Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494. http://dx.doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2

  • Meehl GA, Teng H, Branstator G (2006) Future changes of El Niño in two global coupled climate models. Clim Dyn 26:549–566. doi:10.1007/s00382-005-0098-0

    Article  Google Scholar 

  • Mitchell DM, Gray LJ, Baldwin MP, Charlton-Perez AJ, Anstey J (2012) The influence of stratospheric vortex displacements and splits on surface climate. J Clim (submitted)

  • Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys Res Lett 371:L13805. doi:10.1029/2010GL043551

    Google Scholar 

  • Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res (Atmospheres) 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 380:L04704. doi:10.1029/2010GL046031

    Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/ southern oscillation. Mon Weather Rev 115:1606. doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251

    Article  Google Scholar 

  • Shukla J, Anderson J, Baumhefner D, Brankovic C, Chang Y, Kalnay E, Marx L, Palmer T, Paolino D, Ploshay J, Schubert S, Straus D, Suarez M, Tribbia J (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606 doi:10.1175/1520-0477(2000)081<2593:DSP>2.3.CO;2

    Article  Google Scholar 

  • Simmons A, Wallace JM, Branstator G (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392

    Article  Google Scholar 

  • SPARC-CCMVal (2010) SPARC report on the evaluation of chemistry-climate models. SPARC Report, 5, WCRP-132, WMO/TD-No. 1526. http://www.atmosp.physics.utoronto.ca/SPARC

  • Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to northern hemisphere wintertime weather: implications for prediction. J Clim 15:1421–1428. doi:10.1175/1520-0442(2002)015

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2000) The southern oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13:4358–4365. doi:10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701. doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 reanalysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi:10.1007/s00382-008-0394-6

    Article  Google Scholar 

  • Xie F, Li JP, Tian WS, Feng J (2012) Signals of el niño modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:D. doi:10.5194/acp-12-5259-2012

    Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J Geophys Res (Atmospheres) 112:D13106. doi:10.1029/2006JD007654

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2011) Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J Clim 24:708–720. doi:10.1175/2010JCLI3688.1

    Article  Google Scholar 

  • Zubiaurre I, Calvo N (2012) The El Nino–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J Geophys Res 117. doi:10.1029/2011JD016690

Download references

Acknowledgments

This work was supported by the NASA grant number NNX06AE70G and NASA’s ACMAP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. I. Garfinkel.

Appendix

Appendix

Figure 12 shows the month-by-month evolution of 300hPa height anomalies in GEOSCCM. The response to EPW and CPW in December is qualitatively weaker than the response in January. The response in March is as strong as the response in January or February. The difference between the early winter and late winter responses is statistically significant at the 99 % level. Compositing OND together and JFM together appears to be justified.

Fig. 12
figure 12

Geopotential height anomalies at 300 hPa in the perpetual ENSO GEOSCCM integrations in each extended winter month. Contours are shown at ±20, ±40, ±60, ±80, ±100, ±130, ±160, ±200, ±240 m, and regions with anomalies significant at the 90 % (99 %) level are colored orange(red) or light blue (dark blue). The zero line is bolded

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garfinkel, C.I., Hurwitz, M.M., Waugh, D.W. et al. Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime?. Clim Dyn 41, 1835–1852 (2013). https://doi.org/10.1007/s00382-012-1570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1570-2

Keywords

Navigation