Advertisement

A framework of shape optimisation based on the isogeometric boundary element method toward designing thin-silicon photovoltaic devices

  • Toru Takahashi
  • Tatsuro Yamamoto
  • Yuta Shimba
  • Hiroshi Isakari
  • Toshiro Matsumoto
Original Article
  • 118 Downloads

Abstract

We propose a gradient-based optimisation framework to design the shape of the interfaces in periodic layered structures, which can model photovoltaic devices, optical gratings, etc., according to a desired electromagnetic property. To this end, we first develop an isogeometric boundary element method (IGBEM) to analyse singly periodic boundary value problems for 2D Helmholtz equation in layered media. By nature, the IGBEM is not only numerically accurate but also suitable for the shape optimisation in comparison with the conventional boundary- and domain-type solvers. Next, we derive the shape derivative (or shape sensitivity) of the objective function in terms of the magnetic field strength or energy absorption rate on the basis of the adjoint variable method. The shape derivative can be computed by solving the primal and adjoint problems with the IGBEM. Subsequently, we map our shape optimisation problems to nonlinear programming problems in order to exploit a general-purpose software for the latter problems. After verifying our optimisation framework rigorously by comparing with the exact solutions, we demonstrate a shape optimisation of the silicon-metal interface in a model of thin-silicon photovoltaic devices: it is crucial to determine the interface so that the energy of the incident light can be confined in the silicon layer as much as possible when the thickness of the layer is unconventionally small; one micrometre in our model. The optimal shape achieved 8.6 times higher absorption rate than the reference (flat) shape. This simulation shows that the proposed framework is capable of making a fundamental contribution to analysing and designing photovoltaic devices as well as photonic and plasmonic devices that consist of singly periodic layers.

Keywords

Boundary element method Isogeometric analysis Periodic structure Shape optimisation Adjoint variable method Nonlinear programming problem Quasi-Newton method Photovoltaic device Surface plasmon Plasmonics 

Notes

Acknowledgements

This research was supported by JSPS KAKENHI (No. 15K06683). We would like to thank Mr. Tetsuro Hirai at Nagoya University for his helpful discussions on the proposed IGBEM, especially for the singular integrals. We also would like to thank Mr. Shinichi Hayashi of former graduate student for his contributions to the present research project at the early stage.

References

  1. 1.
    Polman A, Knight M, Garnett EC , Ehrler B, Sinke WC Photovoltaic materials: present efficiencies and future challenges. Science 352(6283).  https://doi.org/10.1126/science.aad4424. URL http://science.sciencemag.org/content/352/6283/aad4424
  2. 2.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9:205–213.  https://doi.org/10.1038/nmat2629 CrossRefGoogle Scholar
  3. 3.
    Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sustain Energy Rev 65:537–552. 10.1016/j.rser.2016.07.031. URL http://www.sciencedirect.com/science/article/pii/S1364032116303598
  4. 4.
    Maier SA (2007) Plasmonics-fundamentals and Applications, Springer. URL http://opus.bath.ac.uk/8624/
  5. 5.
    Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22(43):4794–4808. 10.1002/adma.201000488. URL http://dx.doi.org/10.1002/adma.201000488
  6. 6.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Commun 2:517. copyright-Copyright Nature Publishing Group Nov 2011; Last updated - 2012-05-25. URL https://search.poquest.com/docview/1002587847?accountid=12653
  7. 7.
    Spinelli P, Ferry VE , van de Groep J,  van Lare M, Verschuuren MA, Schropp REI, Atwater HA, Polman A (2012) Plasmonic light trapping in thin-film si solar cells. J Opt 14(2):024002. URL http://stacks.iop.org/2040-8986/14/i=2/a=024002
  8. 8.
    Cao Y-Y, Takeyasu N, Tanaka T, Duan X-M, Kawata S (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5(10):1144–1148.  https://doi.org/10.1002/smll.200801179 Google Scholar
  9. 9.
    Varghese LT, Fan L, Xuan Y, Tansarawiput C, Kim S, Qi M (2013) Resistless nanoimprinting in metal for plasmonic nanostructures. Small 9(22):3778–3783.  https://doi.org/10.1002/smll.201300168 CrossRefGoogle Scholar
  10. 10.
    Sugioka K, Cheng Y (2014) Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev 1(4):041303.  https://doi.org/10.1063/1.4904320 CrossRefGoogle Scholar
  11. 11.
    Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements. NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. 10.1016/j.cma.2004.10.008. URL http://www.sciencedirect.com/science/article/pii/S0045782504005171
  12. 12.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward Integration of CAD and FEA, 1st edn. Wiley Publishing, SingaporeCrossRefzbMATHGoogle Scholar
  13. 13.
    Nguyen VP, Anitescu C, Bordas SP, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116. 10.1016/j.matcom.2015.05.008. URL http://www.sciencedirect.com/science/article/pii/S0378475415001214
  14. 14.
    Bonnet M (1999) Boundary integral equation methods for solids and fluids. Wiley, West SussexGoogle Scholar
  15. 15.
    Politis C, Ginnis A, Kaklis P, Belibassakis K, Feurer C (2009) An isogeometric BEM for exterior potential-flow problems in the plane. In: Proceedings of SIAM/ACM joint conference on geometric and physical modeling, pp. 349–354Google Scholar
  16. 16.
    Takahashi T, Matsumoto T (2012) An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions. Eng Anal Bound Elem 36(12):1766–1775. 10.1016/j.enganabound.2012.06.004. URL http://www.sciencedirect.com/science/article/pii/S0955799712001373
  17. 17.
    Jeong JW, Oh H-S, Kang S, Kim H (2013) Mapping techniques for isogeometric analysis of elliptic boundary value problems containing singularities. Comput Methods Appl Mech Eng 254:334–352. 10.1016/j.cma.2012.09.009. URL http://www.sciencedirect.com/science/article/pii/S0045782512002915
  18. 18.
    May S, Kstner M, Mller S, Ulbricht V (2014) A hybrid IGAFEM/IGABEM formulation for two-dimensional stationary magnetic and magneto-mechanical field problems. Comput Methods Appl Mech Eng 273:161–180. 10.1016/j.cma.2014.01.015. URL http://www.sciencedirect.com/science/article/pii/S0045782514000280
  19. 19.
    Feischl M, Gantner G, Praetorius D (2015) Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. Comput Methods Appl Mech Eng 290:362–386. 10.1016/j.cma.2015.03.013. URL http://www.sciencedirect.com/science/article/pii/S0045782515001231
  20. 20.
    Yoon M, Choi M-J, Cho S (2015) Isogeometric configuration design optimization of heat conduction problems using boundary integral equation. Int J Heat Mass Transf 89:937–949. 10.1016/j.ijheatmasstransfer.2015.05.112. URL http://www.sciencedirect.com/science/article/pii/S001793101500616X
  21. 21.
    Manzoni A, Salmoiraghi F, Heltai L (2015) Reduced basis isogeometric methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils. Comput Methods Appl Mech Eng 284:1147–1180 (isogeometric Analysis Special Issue). http://dx.doi.org/10.1016/j.cma.2014.11.037. URL http://www.sciencedirect.com/science/article/pii/S0045782514004708
  22. 22.
    Kostas K, Ginnis A, Politis C, Kaklis P (2015) Ship-hull shape optimization with a T-spline based BEM-isogeometric solver. Comput Methods Appl Mech Eng 284:611–622 (isogeometric Analysis Special Issue). http://dx.doi.org/10.1016/j.cma.2014.10.030. URL http://www.sciencedirect.com/science/article/pii/S0045782514004009
  23. 23.
    Feischl M, Gantner G, Haberl A, Praetorius D (2016) Adaptive 2D IGA boundary element methods. Eng Anal Boundary Elem 62:141–153. 10.1016/j.enganabound.2015.10.003. URL http://www.sciencedirect.com/science/article/pii/S0955799715002155
  24. 24.
    Simpson R, Liu Z (2016) Acceleration of isogeometric boundary element analysis through a black-box fast multipole method. Eng Anal Bound Elem 66:168–182. 10.1016/j.enganabound.2016.03.004. URL http://www.sciencedirect.com/science/article/pii/S0955799716300315
  25. 25.
    Gillebaart E, Breuker RD (2016) Low-fidelity 2D isogeometric aeroelastic analysis and optimization method with application to a morphing airfoil. Comput Methods Appl Mech Eng 305:512–536. 10.1016/j.cma.2016.03.014. URL http://www.sciencedirect.com/science/article/pii/S0045782516300962
  26. 26.
    Maestre J, Cuesta I, Pallares J (2016) An unsteady 3D isogeometrical boundary element analysis applied to nonlinear gravity waves. Comput Methods Appl Mech Eng 310:112–133. 10.1016/j.cma.2016.06.031. URL http://www.sciencedirect.com/science/article/pii/S0045782516306569
  27. 27.
    Feischl M, Gantner G, Haberl A, Praetorius D (2017) Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. Numeri Math 136(1):147–182. 10.1007/s00211-016-0836-8. URL http://dx.doi.org/10.1007/s00211-016-0836-8
  28. 28.
    Aimi A, Diligenti M, Sampoli M, Sestini A (2017) Non-polynomial spline alternatives in isogeometric symmetric Galerkin BEM. Appl Numer Math 116:10–23 (new Trends in Numerical Analysis: Theory, Methods, Algorithms and Applications (NETNA 2015)). https://doi.org/10.1016/j.apnum.2016.07.004. URL http://www.sciencedirect.com/science/article/pii/S0168927416301118
  29. 29.
    Kostas K, Ginnis A, Politis C, Kaklis P (2017) Shape-optimization of 2D hydrofoils using an isogeometric BEM solver. Comput Aided Design 82:79–87 (isogeometric Design and Analysis). https://doi.org/10.1016/j.cad.2016.07.002. URL http://www.sciencedirect.com/science/article/pii/S0010448516300653
  30. 30.
    Gong Y, Dong C, Qin X (2017) An isogeometric boundary element method for three dimensional potential problems. J Comput Appl Math 313:454–468. 10.1016/j.cam.2016.10.003. URL http://www.sciencedirect.com/science/article/pii/S0377042716304824
  31. 31.
    Gong Y, Dong C, Bai Y (2017) Evaluation of nearly singular integrals in isogeometric boundary element method. Eng Anal Bound Elem 75:21–35. 10.1016/j.enganabound.2016.11.005. URL http://www.sciencedirect.com/science/article/pii/S0955799716302909
  32. 32.
    Gong Y, Dong C (2017) An isogeometric boundary element method using adaptive integral method for 3D potential problems. J Comput Appl Math 319:141–158. 10.1016/j.cam.2016.12.038. URL http://www.sciencedirect.com/science/article/pii/S037704271730002X
  33. 33.
    Sapountzakis E, Tsiptsis I (2017) B-splines in the analog equation method for the generalized beam analysis including warping effects. Comput Struct 180:60–73. 10.1016/j.compstruc.2016.03.007. URL http://www.sciencedirect.com/science/article/pii/S0045794916300621
  34. 34.
    Aimi A, Calabrò F, Diligenti M, Sampoli ML, Sangalli G, Sestini A. New efficient assembly in isogeometric analysis for symmetric Galerkin boundary element method, ArXiv e-prints arXiv:1703.10016
  35. 35.
    Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Comput Aided Design 43(11):1427–1437. 10.1016/j.cad.2011.08.031. URL http://www.sciencedirect.com/science/article/pii/S0010448511002302
  36. 36.
    Simpson R, Bordas S, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209:87–100. 10.1016/j.cma.2011.08.008. URL http://www.sciencedirect.com/science/article/pii/S0045782511002635
  37. 37.
    Simpson R, Bordas S, Lian H, Trevelyan J (2013) An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects. Comput Struct 118:2–12 (special Issue: UK Association for Computational Mechanics in Engineering). 10.1016/j.compstruc.2012.12.021. URL http://www.sciencedirect.com/science/article/pii/S0045794912003355
  38. 38.
    Scott M, Simpson R, Evans J, Lipton S, Bordas S, Hughes T, Sederberg T (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221. 10.1016/j.cma.2012.11.001. URL http://www.sciencedirect.com/science/article/pii/S0045782512003386
  39. 39.
    Belibassakis K, Gerostathis T, Kostas K, Politis C, Kaklis P, Ginnis A, Feurer C (2013) A BEM-isogeometric method for the ship wave-resistance problem. Ocean Eng 60:53–67. 10.1016/j.oceaneng.2012.12.030. URL http://www.sciencedirect.com/science/article/pii/S0029801812004490
  40. 40.
    Mallardo V, Ruocco E (2014) An improved isogeometric boundary element method approach in two dimensional elastostatics. Comput Model Eng Sci 102(5):373–391.  https://doi.org/10.3970/cmes.2014.102.373 MathSciNetzbMATHGoogle Scholar
  41. 41.
    Zechner J, Marussig B, Beer G, Fries T-P. Isogeometric boundary element method with hierarchical matrices, ArXiv e-prints arXiv:1406.2817
  42. 42.
    Marussig B, Zechner J, Beer G, Fries T-P (2015) Fast isogeometric boundary element method based on independent field approximation. Comput Methods Appl Mech Eng 284:458–488 (isogeometric Analysis Special Issue). http://dx.doi.org/10.1016/j.cma.2014.09.035. URL http://www.sciencedirect.com/science/article/pii/S0045782514003582
  43. 43.
    Gu J, Zhang J, Chen L, Cai Z (2015) An isogeometric BEM using PB-spline for 3-D linear elasticity problem. Eng Anal Bound Elem 56:154–161. 10.1016/j.enganabound.2015.02.013. URL http://www.sciencedirect.com/science/article/pii/S0955799715000612
  44. 44.
    Wang Y, Benson D (2015) Multi-patch nonsingular isogeometric boundary element analysis in 3D. Comput Methods Appl Mech Eng 293:71–91. 10.1016/j.cma.2015.03.016. URL http://www.sciencedirect.com/science/article/pii/S0045782515001267
  45. 45.
    Wang Y, Benson D, Nagy A (2015) A multi-patch nonsingular isogeometric boundary element method using trimmed elements. Comput Mech 56(1):173–191. URL http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=103364844&lang=ja&site=ehost-live
  46. 46.
    Bai Y, Dong C, Liu Z (2015) Effective elastic properties and stress states of doubly periodic array of inclusions with complex shapes by isogeometric boundary element method. Compos Struct 128:54–69. 10.1016/j.compstruct.2015.03.061. URL http://www.sciencedirect.com/science/article/pii/S0263822315002445
  47. 47.
    Beer G, Marussig B, Zechner J, Dnser C, Fries T-P (2016) Isogeometric boundary element analysis with elasto-plastic inclusions. Part 1: plane problems. Comput Methods Appl Mech Eng 308:552–570. 10.1016/j.cma.2016.03.035. URL http://www.sciencedirect.com/science/article/pii/S0045782516301219
  48. 48.
    Yoon M, Cho S (2016) Isogeometric shape design sensitivity analysis of elasticity problems using boundary integral equations. Eng Anal Bound Elem 66:119–128. 10.1016/j.enganabound.2016.01.010. URL http://www.sciencedirect.com/science/article/pii/S0955799716300017
  49. 49.
    Mallardo V, Ruocco E (2016) A NURBS boundary-only approach in elasticity. Eur J Comput Mech 25(1-2):71–90. arXiv:http://www.tandfonline.com/doi/pdf/10.1080/17797179.2016.1181034, 10.1080/17797179.2016.1181034. URL http://www.tandfonline.com/doi/abs/10.1080/17797179.2016.1181034
  50. 50.
    Lian H, Kerfriden P, Bordas SPA (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Methods Eng 106(12):972–1017.  https://doi.org/10.1002/nme.5149 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Peng X, Atroshchenko E, Kerfriden P, Bordas SPA (2017) Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment. Int J Fracture 204(1):55–78.  https://doi.org/10.1007/s10704-016-0153-3 CrossRefGoogle Scholar
  52. 52.
    Peng X, Atroshchenko E, Kerfriden P, Bordas S (2017) Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng 316:151–185 (special Issue on Isogeometric Analysis: Progress and Challenges). https://doi.org/10.1016/j.cma.2016.05.038. URL http://www.sciencedirect.com/science/article/pii/S0045782516304832
  53. 53.
    Lian H, Kerfriden P, Bordas S (2017) Shape optimization directly from CAD: an isogeometric boundary element approach using T-splines. Comput Methods Appl Mech Eng 317:1–41. 10.1016/j.cma.2016.11.012. URL http://www.sciencedirect.com/science/article/pii/S0045782516315365
  54. 54.
    Vazquez R, Buffa A, Rienzo LD (2012) NURBS-based BEM implementation of high-order surface impedance boundary conditions. IEEE Trans Magn 48(12):4757–4766.  https://doi.org/10.1109/TMAG.2012.2204897 CrossRefGoogle Scholar
  55. 55.
    Peake M, Trevelyan J, Coates G (2013) Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems. Comput Methods Appl Mech Eng 259:93–102. 10.1016/j.cma.2013.03.016. URL http://www.sciencedirect.com/science/article/pii/S0045782513000674
  56. 56.
    Simpson R, Scott M, Taus M, Thomas D, Lian H (2014) Acoustic isogeometric boundary element analysis. Computer Methods in Applied Mechanics and Engineering 269:265–290. 10.1016/j.cma.2013.10.026. URL http://www.sciencedirect.com/science/article/pii/S0045782513002788
  57. 57.
    Peake M, Trevelyan J, Coates G (2015) Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems. Comput Methods Appl Mech Eng 284:762–780 (isogeometric Analysis Special Issue). http://dx.doi.org/10.1016/j.cma.2014.10.039. URL http://www.sciencedirect.com/science/article/pii/S0045782514004095
  58. 58.
    Coox L, Atak O, Vandepitte D, Desmet W (2017) An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains. Comput Methods Appl Mech Eng 316:186–208 (special Issue on Isogeometric Analysis: Progress and Challenges). https://doi.org/10.1016/j.cma.2016.05.039. URL http://www.sciencedirect.com/science/article/pii/S0045782516304844
  59. 59.
    Liu Z, Majeed M, Cirak F, Simpson RN. Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces, ArXiv e-prints arXiv:1704.08491
  60. 60.
    Heltai L, Arroyo M, DeSimone A (2014) Nonsingular isogeometric boundary element method for Stokes flows in 3D. Comput Methods Appl Mech Eng 268:514–539. 10.1016/j.cma.2013.09.017. URL http://www.sciencedirect.com/science/article/pii/S0045782513002442
  61. 61.
    van Opstal T, van Brummelen E, van Zwieten G (2015) A finite-element/boundary-element method for three-dimensional, large-displacement fluidstructure-interaction. Comput Methods Appl Mech Eng 284:637–663 (isogeometric Analysis Special Issue). http://doi.org/10.1016/j.cma.2014.09.037. URL http://www.sciencedirect.com/science/article/pii/S0045782514003600
  62. 62.
    Joneidi A, Verhoosel C, Anderson P (2015) Isogeometric boundary integral analysis of drops and inextensible membranes in isoviscous flow. Comput Fluids 109:49–66. 10.1016/j.compfluid.2014.12.011. URL http://www.sciencedirect.com/science/article/pii/S0045793014004745
  63. 63.
    Heltai L, Kiendl J, DeSimone A, Reali A (2017) A natural framework for isogeometric fluid-structure interaction based on BEM-shell coupling, Comput Methods Appl Mech Eng 316:522–546 (special Issue on Isogeometric Analysis: Progress and Challenges). https://doi.org/10.1016/j.cma.2016.08.008. URL http://www.sciencedirect.com/science/article/pii/S0045782516308854
  64. 64.
    Boedec G, Leonetti M, Jaeger M (2017) Isogeometric FEM-BEM simulations of drop, capsule and vesicle dynamics in Stokes flow. J Comput Phys 342:117–138. 10.1016/j.jcp.2017.04.024. URL http://www.sciencedirect.com/science/article/pii/S0021999117302954
  65. 65.
    Li J, Dault D, Liu B, Tong Y, Shanker B (2016) Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures. J Comput Phys 319:145–162. 10.1016/j.jcp.2016.04.008. URL http://www.sciencedirect.com/science/article/pii/S0021999116300407
  66. 66.
    Simpson RN, Liu Z, Vazquez R, Evans JA An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations, ArXiv e-prints arXiv:1704.07128
  67. 67.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348.  https://doi.org/10.1016/0021-9991(87)90140-9 MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55(4):299–324. 10.1115/1.1482087. URL http://link.aip.org/link/?AMR/55/299/1
  69. 69.
    Liu Y (2009) Fast multipole boundary element method: theory and applications in engineering. Cambridge University Press, Cambridge. URL http://opac.inria.fr/record=b1132939
  70. 70.
    Bebendorf M (2008) Hierarchical matrices: a means to efficiently solve elliptic boundary value problems, lecture notes in computational science and engineering. Springer Berlin, Heidelberg. URL https://books.google.co.jp/books?id=hnIJOwyz9Z4C
  71. 71.
    Hirai T, Takahashi T, Isakari H, Matsumoto T (2017) A development of isogeometric Galerkin boundary element method for 2D periodic problem. In: The Proceedings of Conference of the Japan Society of Mechanical Engineers, Tokai Branch 2017.66 (2017) 511. 10.1299/jsmetokai.2017.66.511Google Scholar
  72. 72.
    Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33):2976–2988. 10.1016/j.cma.2008.01.025. URL http://www.sciencedirect.com/science/article/pii/S0045782508000509
  73. 73.
    Komkov V, Choi KK, Haug EJ (1986) Design sensitivity analysis of structural systems. Academic Press, The United States of AmericazbMATHGoogle Scholar
  74. 74.
    Sokolowski J, Zolesio J-P (1992) Introduction to shape optimization: shape sensitivity analysis. Springer, BerlinCrossRefzbMATHGoogle Scholar
  75. 75.
    Udawalpola R, Wadbro E, Berggren M (2011) Optimization of a variable mouth acoustic horn. Int J Numer Methods Eng 85(5):591–606MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
  77. 77.
    R. Petit (Ed.), Electromagnetic theory of gratings, topics in current physics, Springer, 1980. URL https://books.google.co.jp/books?id=mrnvAAAAMAAJ
  78. 78.
    Otani Y, Nishimura N (2008) An FMM for periodic boundary value problems for cracks for Helmholtz’ equation in 2D. Int J Numer Methods Eng 73(3):381–406.  https://doi.org/10.1002/nme.2077 MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Barnett A, Greengard L (2010) A new integral representation for quasi-periodic fields and its application to two-dimensional band structure calculations. J Comput Phys 229(19):6898–6914. 10.1016/j.jcp.2010.05.029. URL http://www.sciencedirect.com/science/article/pii/S0021999110002901
  80. 80.
    Cazeaux P, Zahm O (2015) A fast boundary element method for the solution of periodic many-inclusion problems via hierarchical matrix techniques. ESAIM Proc 48:156–168.  https://doi.org/10.1051/proc/201448006 MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Arens T, Sandfort K, Schmitt S (2013) Analysing Ewald’s method for the evaluation of Green’s functions for periodic media. IMA J Appl Math 78:405–431.  https://doi.org/10.1093/imamat/hxr057 MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Telles JCF (1987) A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. Int J Numer Methods Eng 24(5):959–973.  https://doi.org/10.1002/nme.1620240509 CrossRefzbMATHGoogle Scholar
  83. 83.
    Feijóo GR , Oberai AA, Pinsky PM (2004) An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse Prob 20(1):199–228. URL http://stacks.iop.org/0266-5611/20/i=1/a=012
  84. 84.
    Kawajir Y, Laird C, Vigerske S, Wächter A (2015) A tutorial for downloading, installing, and using Ipopt (revision: 2538). URL https://projects.coin-or.org/Ipopt
  85. 85.
    Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Progr 106(1):25–57.  https://doi.org/10.1007/s10107-004-0559-y MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Palik E (1985) Handbook of Optical Constants of Solids, no. 1 in Academic Press handbook series, Academic Press, 1985. URL https://books.google.co.jp/books?id=opDvAAAAMAAJ
  87. 87.
    Isakari H, Kondo T, Takahashi T, Matsumoto T (2017) A level-set-based topology optimisation for acousticelastic coupled problems with a fast BEM-FEM solver. Comput Methods Appl Mech Eng 315:501–521. 10.1016/j.cma.2016.11.006. URL http://www.sciencedirect.com/science/article/pii/S0045782516305187
  88. 88.
    Linton C (1998) The Green’s function for the two-dimensional Helmholtz equation in periodic domains. J Eng Math 33(4):377–401.  https://doi.org/10.1023/A:1004377501747 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Toru Takahashi
    • 1
  • Tatsuro Yamamoto
    • 2
  • Yuta Shimba
    • 1
  • Hiroshi Isakari
    • 1
  • Toshiro Matsumoto
    • 1
  1. 1.Department of Mechanical Systems EngineeringGraduate School of Engineering, Nagoya UniversityNagoyaJapan
  2. 2.Department of Micro-Nano Systems EngineeringGraduate School of Engineering, Nagoya UniversityNagoyaJapan

Personalised recommendations