Skip to main content
Log in

Second-order matching prior family parametrized by sample size and matching probability

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose a family of priors that satisfies the second-order probability matching property. The posterior quantile of a probability matching prior is exactly or approximately equal to the frequentist one. Most models lack an exact matching prior. If all quantiles of a prior’s posterior converge to the frequentist ones up to \(o(n^{-1/2})\) or \(o(n^{-1})\) as the sample size n increases, the prior is called a first-order probability matching prior and a second-order probability matching prior, respectively. Although a second-order matching prior does not necessarily exist, a first-order matching prior always exists. We introduce a class of priors that depend on the sample size and matching probability. We derive the condition under which the family satisfies the second-order probability matching property even when a second-order probability matching prior does not exist. The superiority of the proposed priors is illustrated in several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari S (1985) Differential geometrical methods in statistics. Springer, New York

    Book  Google Scholar 

  • Bhattacharya RN, Ghosh JK (1978) On the validity of the formal Edgeworth expansion. Ann Stat 6:434–451

    Article  MathSciNet  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc Ser B 49:1–39 (with discussion)

    MathSciNet  MATH  Google Scholar 

  • Datta GS, Mukerjee R (2004) Probability matching priors: higher order asymptotics. Springer, New York

    Book  Google Scholar 

  • Garvan CW, Ghosh M (1997) Noninformative priors for dispersion models. Biometrika 84:976–982

    Article  MathSciNet  Google Scholar 

  • Johnson RA (1970) Asymptotic expansions associated with posterior distributions. Ann Math Stat 41:851–864

    Article  MathSciNet  Google Scholar 

  • Kim DH, Kang SG, Lee WD (2006) Noninformative priors for linear combinations of the normal means. Stat Pap 47:249–262

    Article  MathSciNet  Google Scholar 

  • Mukerjee R, Dey DK (1993) Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics. Biometrika 80:499–505

    Article  MathSciNet  Google Scholar 

  • Mukerjee R, Ghosh M (1997) Second-order probability matching priors. Biometrika 84:970–975

    Article  MathSciNet  Google Scholar 

  • Ong SH, Mukerjee R (2010) Data-dependent probability matching priors of the second-order. Statistics 44:291–302

    Article  MathSciNet  Google Scholar 

  • Peers HW (1965) On confidence points and Bayesian probability points in the case of several parameters. J R Stat Soc Ser B 27:9–16

    MathSciNet  MATH  Google Scholar 

  • Sun D, Ye K (1996) Frequentist validity of posterior quantiles for a two-parameter exponential family. Biometrika 83:55–65

    Article  MathSciNet  Google Scholar 

  • Tibshirani RJ (1989) Noninformative priors for one parameter of many. Biometrika 76:604–608

    Article  MathSciNet  Google Scholar 

  • Ventura L, Cabras S, Racugno W (2009) Prior distributions from pseudo-likelihoods in the presence of nuisance parameters. J Am Stat Assoc 104:768–774

    Article  MathSciNet  Google Scholar 

  • Welch BL, Peers HW (1963) On formulae for confidence points based on integrals of weighted likelihoods. J R Stat Soc Ser B 25:318–329

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the anonymous reviewers for valuable comments which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Hirose.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

This research was in part supported by JSPS KAKENHI Grant Number 26730014, MEXT KAKENHI Grant Number 16H06533 and JST CREST Grant Number JPMJCR1763.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

To prove this lemma, we adopt a geometrical invariance viewpoint. We first decompose (7) as

$$\begin{aligned} \partial _{j}\pi _1(\theta ) \frac{I^{j1}}{\sqrt{I^{11}}}+\pi _1(\theta )\partial _j \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) =0. \end{aligned}$$
(20)

Applying the operator \(I^{k1}\partial _k/\sqrt{I^{11}}\) to (20), we obtain

$$\begin{aligned}&\partial _j \partial _k\pi _1(\theta )\frac{I^{k1}I^{j1}}{I^{11}} +\partial _j\pi _1(\theta )\partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}} \nonumber \\&\quad +\partial _k\pi _1(\theta )\partial _j \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}} +\pi _1(\theta )\partial _j \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}}=0 . \end{aligned}$$
(21)

Multiplying (20) by \(\partial _k ( I^{k1}/\sqrt{I^{11}})\), we also obtain

$$\begin{aligned}&-\partial _j\pi _1(\theta )\partial _k\left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \frac{I^{j1}}{\sqrt{I^{11}}} -\pi _1(\theta ) \partial _j\left( \frac{I ^{j1}}{\sqrt{I^{11}}}\right) \partial _{k}\left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \nonumber \\&-\pi _1(\theta )\partial _j\partial _k\left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}} +\pi _1(\theta )\partial _j\partial _k\left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}}=0, \end{aligned}$$
(22)

where the last two terms (which cancel) have been purposely written out.

It holds that

$$\begin{aligned} \partial _j\left( \frac{I^{j1}I^{k1}}{I^{11}}\right)&= \partial _j\left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}}+\partial _j\left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \frac{I^{j1}}{\sqrt{I^{11}}} \end{aligned}$$
(23)
$$\begin{aligned}&= \left( \partial _j I^{j1}\right) \frac{I^{k1}}{I^{11}} + \left( \partial _j I^{k1}\right) \frac{I^{j1}}{I^{11}} - \left( \partial _j I^{11}\right) \frac{ I^{j1} I^{k1} }{ (I^{11})^2 }. \end{aligned}$$
(24)

Moreover,

$$\begin{aligned} \partial _l I^{mk}&=-I^{mi}I^{kj} \left( \varGamma _{ilj}^{(1)} +\varGamma _{jli}^{(1)}+T_{ijl}\right) , \end{aligned}$$
(25)
$$\begin{aligned} L_{ijk}&=-\varGamma _{ikj}^{(1)}-\varGamma _{jki}^{(1)}- \varGamma _{ijk}^{(1)}-T_{ijk}. \end{aligned}$$
(26)

Condition (8) is then transformed as follows. Expanding (8), we obtain

$$\begin{aligned}&z_{1-\alpha }\biggl [ \frac{1}{3}\partial _{i}\left\{ \pi (\theta ) \frac{I^{j1}I^{k1}}{I^{11}}L_{jkl}\left( 3I^{li}-2\frac{I^{l1}I^{i1}}{I^{11}}\right) \right\} -\partial _j\partial _k \pi (\theta ) \frac{I^{j1}I^{k1}}{I^{11}}\nonumber \\&\quad -\partial _j\partial _k \left( \frac{I^{k1}I^{j1}}{I^{11}}\right) \pi (\theta ) -\partial _j {\pi (\theta )}\partial _k \left( \frac{I^{k1}I^{j1}}{I^{11}}\right) -\partial _k {\pi (\theta )}\partial _j \left( \frac{I^{k1}I^{j1}}{I^{11}}\right) \biggr ]\nonumber \\&\quad + 2\partial _{j}\left( \frac{\pi _2(\theta ;\alpha ) I^{j1}}{\sqrt{I^{11}}}\right) =0. \end{aligned}$$
(27)

Multiplying (21) by \(z_{1-\alpha }\) and adding it to (27), we obtain

$$\begin{aligned}&z_{1-\alpha }\biggl [ \frac{1}{3}\partial _{i}\left\{ \pi _1 (\theta ) \frac{I^{j1}I^{k1}}{I^{11}}L_{jkl} \left( 3I^{li}-2\frac{I^{l1}I^{i1}}{I^{11}}\right) \right\} -\partial _j\partial _k \left( \frac{I^{j1}I^{k1}}{I^{11}}\right) \pi _1(\theta ) \nonumber \\&\quad -\partial _j {\pi _1(\theta )}\partial _k \left( \frac{I^{j1}I^{k1}}{I^{11}}\right) -\partial _k {\pi _1(\theta )}\partial _j \left( \frac{I^{j1}I^{k1}}{I^{11}}\right) +\partial _j\pi _1(\theta )\partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}} \nonumber \\&\quad +\partial _k\pi _1(\theta )\partial _j\left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}}+\pi _1(\theta )\partial _j \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}}\biggr ]\nonumber \\&\quad +2\partial _{j}\left( \frac{\pi _2(\theta ;\alpha )I^{j1}}{\sqrt{I^{11}}}\right) =0. \end{aligned}$$
(28)

Note that condition (8) is equivalent to condition (28) when Eq. (7) holds.

Using (23), (28) is expanded as follows:

$$\begin{aligned}&z_{1-\alpha }\biggl [ \frac{1}{3}\partial _{i}\left\{ \pi _1(\theta ) \frac{I^{j1}I^{k1}}{I^{11}}L_{jkl}\left( 3I^{li}-2\frac{I^{l1}I^{i1}}{I^{11}}\right) \right\} -\partial _j \partial _k \left( \frac{I^{k1}}{\sqrt{I^{11}}} \right) \frac{I^{j1}\pi _1(\theta )}{\sqrt{I^{11}}}\nonumber \\&\quad -\partial _j \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \pi _1(\theta ) -\partial _k \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \partial _j \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \pi _1(\theta ) \nonumber \\&\quad -\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j\pi _1(\theta ) \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) -\frac{I^{k1}}{\sqrt{I^{11}}}\partial _k \pi _1(\theta ) \partial _j \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \biggr ]\nonumber \\&\quad + 2\partial _{j}\left( \frac{\pi _2(\theta ;\alpha )I^{j1}}{\sqrt{I^{11}}}\right) =0. \end{aligned}$$
(29)

Using (20), Eq. (29) transforms into

$$\begin{aligned}&z_{1-\alpha }\biggl [ \frac{1}{3}\partial _{i}\left\{ \pi _1(\theta ) \frac{I^{j1}I^{k1}}{I^{11}}L_{jkl}\left( 3I^{li}-2\frac{I^{l1}I^{i1}}{I^{11}}\right) \right\} -\partial _j \partial _k \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \frac{I^{j1}\pi _1(\theta )}{\sqrt{I^{11}}}\nonumber \\&\quad -\partial _j \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \pi _1(\theta ) -\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j\pi _1(\theta )\partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \biggr ]\nonumber \\&\quad + 2\partial _{j}\left( \frac{\pi _2(\theta ;\alpha )I^{j1}}{\sqrt{I^{11}}}\right) =0. \end{aligned}$$
(30)

Note that condition (28) is equivalent to condition (30) when Eq. (7) holds.

By Eq. (22), we have

$$\begin{aligned}&-\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j\pi _1(\theta )\partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \\&\quad -\partial _j \partial _k \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \frac{I^{j1}\pi _1(\theta )}{\sqrt{I^{11}}} -\partial _j \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \pi _1(\theta )\nonumber \\&=-\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j\pi _1(\theta )\partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \\&\quad - \partial _j\pi _1(\theta )\partial _k\left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \frac{I^{j1}}{\sqrt{I^{11}}} -\partial _j \partial _k \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \frac{I^{j1}\pi _1(\theta )}{\sqrt{I^{11}}}\nonumber \\&\quad -\pi _1(\theta )\partial _j\partial _k\left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \frac{I^{k1}}{\sqrt{I^{11}}} -\partial _j \left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \pi _1(\theta )\nonumber \\&\quad -\pi _1(\theta )\partial _j \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \partial _k\left( \frac{I^{k1}}{\sqrt{I^{11}}}\right) +\pi _1(\theta )\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j\partial _k\left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \nonumber \\&=-\partial _j \pi _1(\theta ) \partial _k\left( \frac{I^{j1}I^{k1}}{I^{11}}\right) -\pi _1(\theta ) \partial _j\partial _k\left( \frac{I^{j1}I^{k1}}{I^{11}}\right) +\pi _1(\theta )\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) \nonumber \\&=-\partial _j \left\{ \pi _1(\theta )\partial _k \left( \frac{I^{j1}I^{k1}}{I^{11}}\right) \right\} +\pi _1(\theta )\frac{I^{k1}}{\sqrt{I^{11}}}\partial _j \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) . \end{aligned}$$

Therefore, (30) reduces to

$$\begin{aligned}&\frac{z_{1-\alpha }}{3}\partial _{i}\left[ \pi _1(\theta )\left\{ \frac{I^{j1}I^{k1}}{I^{11}}L_{jkl}\left( 3I^{li}-2\frac{I^{l1}I^{i1}}{I^{11}}\right) -3 \partial _k \left( \frac{I^{i1}I^{k1}}{I^{11}}\right) \right\} \right] \nonumber \\&\quad +\pi _1(\theta )\frac{z_{1-\alpha }I^{k1}}{\sqrt{I^{11}}}\partial _j \partial _k \left( \frac{I^{j1}}{\sqrt{I^{11}}}\right) + 2\partial _{j}\left( \frac{\pi _2(\theta ;\alpha )I^{j1}}{\sqrt{I^{11}}}\right) =0 . \end{aligned}$$
(31)

Condition (30) is equivalent to condition (31) when Eq. (7) holds.

We now transform the first and second terms of the left-hand side of Eq. (31), respectively. Using (24), (25) and (26), the first term of (31) is equivalent to

$$\begin{aligned}&\frac{z_{1-\alpha }}{3}\partial _k \biggl [ \pi _1(\theta )\biggl \{ \frac{I^{j1}I^{l1}}{I^{11}} \left( -\varGamma _{jml}^{(1)}-\varGamma _{lmj}^{(1)}-\varGamma _{jlm}^{(1)}-T_{jlm} \right) \Bigl (3I^{mk}-2\frac{I^{m1}I^{k1}}{I^{11}} \Bigr ) \nonumber \\&\quad +3\biggl ( \frac{ I^{j1}I^{k1}I^{li} }{I^{11}} \Bigl (\varGamma _{ijl}^{(1)}+\varGamma _{jli}^{(1)}+T_{ijl} \Bigr ) + \frac{ I^{j1}I^{l1}I^{ki} }{I^{11}} \Bigl (\varGamma _{ilj}^{(1)}+\varGamma _{jli}^{(1)}+T_{ijl} \Bigr ) \nonumber \\&\quad -\frac{ I^{i1}I^{j1}I^{k1}I^{l1} }{(I^{11})^2} \Bigl (\varGamma _{ilj}^{(1)}+\varGamma _{jli}^{(1)}+T_{ijl} \Bigr ) \biggr ) \biggr \} \biggr ], \end{aligned}$$

which reduces to

$$\begin{aligned}&\frac{z_{1-\alpha }}{3}\partial _k \biggl [ \pi _1(\theta ) \biggl \{ -\frac{ 3I^{j1}I^{l1}I^{mk} }{I^{11}}\varGamma _{jml}^{(1)}\nonumber \\&\quad -\frac{ I^{j1}I^{k1}I^{l1}I^{m1} }{(I^{11})^2}T_{jlm}+ \frac{ 3I^{j1}I^{k1}I^{lm} }{I^{11}} \Bigl (\varGamma _{mlj}^{(1)}+\varGamma _{jlm}^{(1)}+T_{jlm} \Bigr )\biggr \} \biggr ]. \end{aligned}$$
(32)

The second term of (31) transforms into

$$\begin{aligned}&\pi _1(\theta )\frac{z_{1-\alpha }I^{k1}}{\sqrt{I^{11}}}\partial _k \biggl \{ -\frac{ I^{j1}I^{lm} }{\sqrt{I^{11}}} \Bigl (\varGamma _{mlj}^{(1)}+\varGamma _{jlm}^{(1)}+T_{jlm} \Bigr )\nonumber \\&\quad + \frac{ I^{j1}I^{l1}I^{m1} }{ 2(I^{11})^{3/2}} \Bigl (\varGamma _{ljm}^{(1)}+\varGamma _{mjl}^{(1)}+T_{jlm} \Bigr ) \biggr \}. \end{aligned}$$

By Leibniz’s rule and Eq. (7), it holds that

$$\begin{aligned}&\pi _1(\theta )\frac{z_{1-\alpha }I^{k1}}{\sqrt{I^{11}}}\partial _k \biggl \{ -\frac{ I^{j1}I^{lm} }{\sqrt{I^{11}}} \Bigl (\varGamma _{mlj}^{(1)}+\varGamma _{jlm}^{(1)}+T_{jlm} \Bigr ) + \frac{ I^{j1}I^{l1}I^{m1} }{ 2(I^{11})^{3/2}} \Bigl (\varGamma _{ljm}^{(1)}+\varGamma _{mjl}^{(1)} \Bigr ) \biggr \} \nonumber \\&= z_{1-\alpha } \partial _k \biggl \{ -\frac{\pi _1(\theta )I^{j1}I^{k1}I^{lm}}{I^{11}} \Bigl (\varGamma _{mlj}^{(1)}+\varGamma _{jlm}^{(1)}+T_{jlm} \Bigr ) + \frac{\pi _1(\theta )I^{j1}I^{k1}I^{l1}I^{m1} }{(I^{11})^{2}} \varGamma _{ljm}^{(1)} \biggr \}. \end{aligned}$$

The second term of (31) then reduces to

$$\begin{aligned}&z_{1-\alpha } \partial _k \biggl \{ -\frac{\pi _1(\theta )I^{j1}I^{k1}I^{lm}}{I^{11}} \Bigl (\varGamma _{mlj}^{(1)}+\varGamma _{jlm}^{(1)}+T_{jlm} \Bigr ) + \frac{\pi _1(\theta )I^{j1}I^{k1}I^{l1}I^{m1} }{(I^{11})^{2}} \varGamma _{ljm}^{(1)} \biggr \} \nonumber \\&\quad + \pi _1(\theta )\frac{z_{1-\alpha }I^{k1}}{\sqrt{I^{11}}} \partial _k \left\{ \frac{I^{m1}I^{l1} I^{j1}}{2(I^{11})^{3/2}}T_{jlm}\right\} . \end{aligned}$$
(33)

Dividing both sides of Eq. (31) by \(\sqrt{\mathrm {det}I}\) and rearranging through Eqs. (32) and (33), Eq. (31) reduces to

$$\begin{aligned}&\frac{z_{1-\alpha }}{2\sqrt{\mathrm {det}I}} \partial _{i}\left\{ \pi _1(\theta )\varGamma ^{(1)}_{jlk} \frac{I^{j1}I^{k1}}{I^{11}}\left( -I^{li}+\frac{I^{l1} I^{i1}}{I^{11}}\right) \right\} \nonumber \\&\quad +\frac{z_{1-\alpha } \pi _1(\theta )I^{i1}}{12\sqrt{I^{11}\mathrm {det}I}}\partial _{i}\left\{ T_{jkl}\frac{I^{j1}I^{k1}I^{l1}}{(I^{11})^{3/2}}\right\} + \frac{1}{\sqrt{\mathrm {det}I}}\partial _{j}\left( \frac{ \pi _2 ( \theta ;\alpha )I^{j1}}{\sqrt{I^{11}}} \right) =0. \end{aligned}$$
(34)

Thus, condition (8) is equivalent to condition (34) when Eq. (7) holds. The latter is geometrically invariant and contains only first-order differential terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Hirose, Y. & Komaki, F. Second-order matching prior family parametrized by sample size and matching probability. Stat Papers 61, 1701–1717 (2020). https://doi.org/10.1007/s00362-018-1001-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1001-5

Keywords

Mathematics Subject Classification

Navigation