Skip to main content
Log in

Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

A Publisher Correction to this article was published on 12 September 2019

This article has been updated

Abstract

In this paper, we adopt the eigenvector empirical spectral distribution (VESD) to investigate the limiting behavior of eigenvectors of a large dimensional Wigner matrix \(\mathbf {W}_n.\) In particular, we derive the optimal bound for the rate of convergence of the expected VESD of \(\mathbf{W}_n\) to the semicircle law, which is of order \(O(n^{-1/2})\) under the assumption of having finite 10th moment. We further show that the convergence rates in probability and almost surely of the VESD are \(O(n^{-1/4})\) and \(O(n^{-1/6}),\) respectively, under finite eighth moment condition. Numerical studies demonstrate that the convergence rate does not depend on the choice of unit vector involved in the VESD function, and the best possible bound for the rate of convergence of the VESD is of order \(O(n^{-1/2}).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 12 September 2019

    Unfortunately, due to a technical error, the articles published in issues 60:2 and 60:3 received incorrect pagination. Please find here the corrected Tables of Contents. We apologize to the authors of the articles and the readers.

References

  • Anderson TW (1963) Asymptotic theory for principal component analysis. Ann Math Stat 34:122–148

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD (1993) Convergence rate of expected spectral distributions of large random matrices. I. Wigner matrices. Ann Probab 21(2):625–648

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Pan GM (2012) Limiting behavior of eigenvectors of large Wigner matrices. J Stat Phys 146(3):519–549

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Silverstein JW (1998) No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann Probab 26(1):316–345

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Silverstein JW (2004) CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann Probab 32(1A):553–605

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Silverstein JW (2010) Spectral analysis of large dimensional random matrices. Springer series in statistics, vol 20, 2nd edn. Springer, New York

  • Bai ZD, Yao JF (2005) On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11(6):1059–1092

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Miao BQ, Tsay JS (1997) A note on the convergence rate of the spectral distributions of large random matrices. Stat Probab Lett 34(1):95–101

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Miao BQ, Pan GM (2007) On asymptotics of eigenvectors of large sample covariance matrix. Ann Probab 35(4):1532–1572

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZD, Hu J, Pan GM, Zhou W (2011) A note on rate of convergence in probability to semicircular law. Electron J Probab 16(88):2439–2451

    Article  MathSciNet  MATH  Google Scholar 

  • Bao ZG, Pan GM, Zhou W (2013) Central limit theorem for partial linear eigenvalue statistics of Wigner matrices. J Stat Phys 150(1):88–129

    Article  MathSciNet  MATH  Google Scholar 

  • Croux C, Filzmoser P, Fritz H (2013) Robust sparse principal component analysis. Technometrics 55(2):202–214

    Article  MathSciNet  Google Scholar 

  • Erdős L, Schlein B, Yau HT (2009) Local semicircle law and complete delocalization for Wigner random matrices. Commun Math Phys 287(2):641–655

    Article  MathSciNet  MATH  Google Scholar 

  • Erdős L, Yau HT, Yin J (2012) Bulk universality for generalized Wigner matrices. Probab Theory Relat Fields 154(1–2):341–407

    Article  MathSciNet  MATH  Google Scholar 

  • Götze F, Tikhomirov A (2003) Rate of convergence to the semi-circular law. Probab Theory Relat Fields 127(2):228–276

    Article  MathSciNet  MATH  Google Scholar 

  • Götze F, Tikhomirov A (2005) The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent Eur J Math 3(4):666–704

    Article  MathSciNet  MATH  Google Scholar 

  • Götze F, Tikhomirov A (2016) Optimal bounds for convergence of expected spectral distribution to the semi-circular law. Probab Theory Relat Fields 165:163–233

    Article  MathSciNet  MATH  Google Scholar 

  • Guo WX, Liu XH, Zhang SL (2016) The principal correlation components estimator and its optimality. Stat Pap 57(3):755–779

    Article  MathSciNet  MATH  Google Scholar 

  • Heewon P, Sadanori K (2015) Principal component selection via adaptive regularization method and generalized information criterion. Stat Pap 1–14. doi:10.1007/s00362-015-0691-1

  • Johnstone IM (2001) On the distribution of the largest eigenvalue in principal component analysis. Ann Stat 29(2):295–327

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone IM, Lu AY (2009) On consistency and sparsity for principal component analysis in high dimensions. J Am Stat Assoc 104(486):682–693

    Article  MathSciNet  MATH  Google Scholar 

  • Knowles A, Yinm J (2013) Eigenvector distribution of Wigner matrices. Probab Theory Relat Fields 155(3–4):543–582

    Article  MathSciNet  MATH  Google Scholar 

  • Li WM (2014) Local expectations of the population spectral distribution of a high-dimensional covariance matrix. Stat Pap 55(2):563–573

    Article  MathSciNet  MATH  Google Scholar 

  • Ma ZM (2013) Sparse principal component analysis and iterative thresholding. Ann Stat 41(2):772–801

    Article  MathSciNet  MATH  Google Scholar 

  • Paul D (2007) Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat Sin 17(4):1617–1642

    MathSciNet  MATH  Google Scholar 

  • Paulo CR, Ara TL (2009) Analysis of an European Union election using principal component analysis. Stat Sin 50(4):895–904

    MathSciNet  MATH  Google Scholar 

  • Shen HP, Huang JHZ (2008) Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 99(6):1015–1034

    Article  MathSciNet  MATH  Google Scholar 

  • Silverstein JW (1989) On the eigenvectors of large-dimensional sample covariance matrices. J Multivar Anal 30(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Silverstein JW (1990) Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann Probab 18(3):1174–1194

    Article  MathSciNet  MATH  Google Scholar 

  • Silverstein JW, Bai ZD (1995) On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J Multivar Anal 54(2):175–192

    Article  MathSciNet  MATH  Google Scholar 

  • Tao T, Vu V (2012) Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl 1(1):1150001, 27

  • Xia NN, Bai ZD (2015) Functional CLT of eigenvectors for large sample covariance matrices. Stat Pap 56(1):23–60

    Article  MathSciNet  MATH  Google Scholar 

  • Xia NN, Qin YL, Bai ZD (2013) Convergence rates of eigenvector empirical spectral distribution of large dimensional sample covariance matrix. Ann Stat 41(5):2572–2607

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by NSFC 11501348, Shanghai Pujiang Program 15PJ1402300, IRTSHUFE and the State Key Program in the Major Research Plan of NSFC 91546202. The research was partially supported by National Natural Science Foundation of China (Grant No. 11571067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Xia.

Appendices

Appendix 1

Lemma 8

Under the conditions of Theorem 1, when \(z\in {\mathcal D},\) there exists a constant C,  such that for any \(l\ge 1,\)

$$\begin{aligned} \text {E}\left| \xi _k\right| ^{2l}\le \left\{ \begin{array}{l@{\quad }l}\dfrac{C}{n^lv^l}\left( 1+\dfrac{\Delta }{v}\right) ^l, &{} \text{ for } \, l\le 3,\\ \dfrac{C}{n^{l+1}v^{2l-1}}\left( 1+\dfrac{\Delta }{v}\right) , &{} \text{ for }\, l\ge 4,\end{array}\right. \end{aligned}$$

where \(\Delta =\Vert EF^{\mathbf{W}_n}-F\Vert .\)

Proof

For Stieltjes transform \(s_n(z),\) integration by parts yields

$$\begin{aligned} \left| Es_n(z)-s(z)\right| \le \pi \Delta /v. \end{aligned}$$

Combined with the fact \(|s(z)|\le 1,\) implies that \(|Es_n(z)|\le C(1+\Delta /v).\) Under finite eighth moment assumption, we have \(E|X_{jk}|^{4l}\le Cn^{l-2}.\) Thus by Lemma 16, it follows that

$$\begin{aligned} E\left| \xi _k\right| ^{2l}\le & {} \dfrac{C}{n^{2l}}\left[ \left( Etr\mathbf{A}_k^{-1}(z)\mathbf{A}_k^{-1}(\bar{z})\right) ^l +n^{l-2}Etr\left( \mathbf{A}_k^{-1}(z)\mathbf{A}_k^{-1}(\bar{z})\right) ^l \right] \\= & {} \dfrac{C}{n^{2l}}\left[ \left( v^{-1}E\left( \mathfrak {I}tr\mathbf{A}_k^{-1}(z)\right) \right) ^l +n^{l-2}Etr\left( \mathbf{A}_k^{-1}(z)\mathbf{A}_k^{-1}(\bar{z})\right) ^l \right] \\\le & {} \dfrac{C}{n^{2l}}\left[ \dfrac{n^l}{v^l}\left| E\mathfrak {I}\left( s_n(z)\right) \right| ^l +\dfrac{n^{l-1}}{v^{2l-1}} E\left| \mathfrak {I}\left( s_n(z)\right) \right| \right] \\\le & {} \dfrac{C}{n^lv^l}\left( 1+\Delta /v\right) ^l+\dfrac{C}{n^{l+1}v^{2l-1}}(1+\Delta /v). \end{aligned}$$

\(\square \)

Lemma 9

Under the conditions of Theorem 1, for all \(z\in {\mathcal D},\) there exists a large constant \(C>0,\) such that for any \(t>0\) and for all \(k=1,\ldots ,n,\) we have

$$\begin{aligned} P\left( \left| z^{-1}\gamma _n\right|>C\right) =o\left( n^{-t}\right) ,\quad P\left( \left| z^{-1}\alpha _k\right| >C\right) =o\left( n^{-t}\right) . \end{aligned}$$

Proof

Recall that

$$\begin{aligned} \alpha _k=\dfrac{1}{1+z^{-1}\mathbf {w}_k^*\mathbf {A}_k^{-1}\mathbf {w}_k}, \quad \gamma _k=\dfrac{1}{1+z^{-1}n^{-1}(\text {tr}\mathbf {A}_k^{-1}+z^{-1})}. \end{aligned}$$

Define

$$\begin{aligned} b_n:= \dfrac{1}{1+z^{-1}n^{-1}\text {Etr}\mathbf {A}^{-1}(z)}, \quad \beta _n:=\dfrac{1}{1+z^{-1}n^{-1}\text {tr}\mathbf {A}^{-1}(z)}. \end{aligned}$$

First if we suppose that for any fixed \(t>0,\) there exists a large constant \(C>0,\) such that the following equation holds,

$$\begin{aligned} P\left( \left| z^{-1}\beta _n\right| >C\right) =o\left( n^{-t}\right) . \end{aligned}$$
(26)

Then from

$$\begin{aligned} \beta _n-\gamma _k=\beta _n\gamma _kz^{-1}n^{-1}\left( tr\mathbf{A}_k^{-1}(z)-tr\mathbf{A}^{-1}(z)+z^{-1}\right) , \end{aligned}$$
(27)

we have

$$\begin{aligned} \left| z^{-1}\gamma _k\right|= & {} \dfrac{|z^{-1}\beta _n|}{|1+z^{-1}\beta _nn^{-1}(tr(\mathbf{A}_k^{-1}(z)-\mathbf{A}^{-1}(z))+z^{-1})|}\\\le & {} \dfrac{|z^{-1}\beta _n|}{1-2|z^{-1}\beta _n|(nv)^{-1}}, \end{aligned}$$

where the last inequality comes from the facts that \(|tr(\mathbf{A}_k^{-1}(z)-\mathbf{A}^{-1}(z))|\le v^{-1}\) and \(|z^{-1}|\le v^{-1}.\) If (26) is true, for \(v\ge O(n^{-1/2}),\) we can choose n large enough such that \(2|z^{-1}\beta _n|(nv)^{-1}\le 1/2.\) Then \(|z^{-1}\gamma _k|\le 2|z^{-1}\beta _n|,\) which implies that \(P(|z^{-1}\gamma _k|>C)=o(n^{-t})\) holds.

Similarly, consider \(z^{-1}\alpha _k,\) if \(|z^{-1}\gamma _k||\xi _k|\le 1/2\) holds, then we have

$$\begin{aligned} \left| z^{-1}\alpha _k\right| =\dfrac{|z^{-1}\gamma _k|}{|1+z^{-1}\gamma _k\xi _k|} \le \dfrac{|z^{-1}\gamma _k|}{1-|z^{-1}\gamma _k||\xi _k|} \le 2\left| z^{-1}\gamma _k\right| . \end{aligned}$$

That is, for any \(p\ge 1,\)

$$\begin{aligned} P\left( \left| z^{-1}\alpha _k\right|>C\right)\le & {} P\left( \left| \xi _k\right| >1/(2C)\right) \le { CE}\left| \xi _k\right| ^p. \end{aligned}$$

Since \(|X_{jk}|\le \varepsilon _n n^{1/4},\) choose \(\eta =\varepsilon _nn^{-1/4}\) in Lemma 20, for \(p\ge \log n,\)

$$\begin{aligned} \text {E}\left| \xi _k\right| ^p\le & {} C\left( n\varepsilon _n^4n^{-1}\right) ^{-1}\left( v^{-1}\varepsilon _n^2n^{-1/2}\right) ^p \le C\varepsilon _n^{2p-4}\le C\varepsilon _n^p. \end{aligned}$$

For any fixed \(t>0,\) when n is large enough so that \(\log \varepsilon _n^{-1}>t+1,\) it can be shown that

$$\begin{aligned} \text {E}\left| \xi _k\right| ^p\le & {} C\exp \left\{ -p\log \varepsilon _n^{-1}\right\} \le C\exp \{-p(t+1)\}\\\le & {} C\exp \{-(t+1)\log n\}\\= & {} Cn^{-t-1}=o\left( n^{-t}\right) . \end{aligned}$$

This shows that Lemma 9 is true if we can prove Eq. (26).

From (8.1.13) and (8.1.18) in Bai and Silverstein (2010), we can see that

$$\begin{aligned} \left| z^{-1}b_n\right| =\dfrac{1}{|z+Es_n(z)|}=|-s(z+\delta )|, \end{aligned}$$

which implies that \(|z^{-1}b_n|\le 1.\) Further from

$$\begin{aligned} b_n-\beta _n=b_n\beta _nz^{-1}n^{-1} \left( \text {tr}\mathbf {A}^{-1}(z)-\text {Etr}\mathbf {A}^{-1}(z)\right) =b_n\beta _nz^{-1}\left( s_n(z)-\text {E}s_n(z)\right) , \end{aligned}$$

we obtain

$$\begin{aligned} \left| z^{-1}\beta _n\right|= & {} \dfrac{|b_n||z^{-1}b_n|}{|1+z^{-1}b_n(s_n(z)-\text {E}s_n(z))|}\\\le & {} \dfrac{|z^{-1}b_n|}{1-|z^{-1}b_n||s_n(z)-\text {E}s_n(z)|}\\\le & {} 2\left| z^{-1}b_n\right| \le 2, \end{aligned}$$

if \(|s_n(z)-Es_n(z)|\le 1/2.\) Therefore, by Lemma 19, for any \(l> \max \{1,\,2t\}\) and \(v\ge O(n^{-1/2}),\) we have

$$\begin{aligned} P\left( \left| z^{-1}\beta _n\right| \ge 2\right)\le & {} P\left( \left| s_n(z)-Es_n(z)\right| \ge 1/2\right) \\\le & {} { CE}\left| s_n(z)-Es_n(z)\right| ^{2l} \\\le & {} \dfrac{C}{n^{2l}v^{3l}}=o\left( n^{-t}\right) . \end{aligned}$$

This completes the proof. \(\square \)

Lemma 10

Under the conditions of Theorem 1, for any \(l\ge 1\) and \(z\in {\mathcal D},\) there exists a constant \(C>0,\) such that

$$\begin{aligned} \text {E}\left| z^{-1}\left( \gamma _k+zs(z)\right) \right| ^{2l}\le \dfrac{C}{(nv)^{2l}}. \end{aligned}$$

Proof

By (27), (26), (18) and Lemmas 19 and 18, it follows that

$$\begin{aligned}&\text {E}\left| z^{-1}\left( \gamma _k+zs(z)\right) \right| ^{2l} \le { CE}\left| z^{-1}\left( \gamma _k-\beta _n\right) \right| ^{2l} +{ CE}\left| z^{-1}\left( \beta _n+zs(z)\right) \right| ^{2l}\\&\quad ={ CE}\left| z^{-2}\gamma _k\beta _n n^{-1}\left( \text {tr}\mathbf {A}_k^{-1}(z)+z^{-1}-\text {tr}\mathbf {A}^{-1}(z)\right) \right| ^{2l} +{ CE}\left| z^{-1}\beta _n-\dfrac{1}{z+s(z)}\right| ^{2l}\\&\quad \le \dfrac{C}{(nv)^{2l}}+{ CE}\left| \dfrac{z^{-1}\beta _n}{z+s(z)} \left( \dfrac{1}{n}\text {tr}\mathbf {A}^{-1}(z)-s(z)\right) \right| ^{2l}\\&\quad \le \dfrac{C}{(nv)^{2l}}+{ CE}\left| s_n(z)-\text {E}s_n(z)\right| ^{2l}+C\left| \text {E}s_n(z)-s(z)\right| ^{2l}\\&\quad \le \dfrac{C}{(nv)^{2l}}+\dfrac{C}{n^{2l}v^{3l}}+\dfrac{C}{n^l}\\&\quad \le \dfrac{C}{(nv)^{2l}}. \end{aligned}$$

\(\square \)

Lemma 11

Under the conditions of Theorem 1, for \(z\in {\mathcal D},\) we have

$$\begin{aligned} \text {E}\left| s_n^H(z)-\text {E}s_n^H(z)\right| ^{2l}\le \dfrac{C}{n^lv^{2l}}\left( 1+\dfrac{\Delta ^H}{v}\right) ^{2l} +\dfrac{C}{n^{l/2+2}v^l}\left( 1+\dfrac{\Delta ^H}{v}\right) ^l. \end{aligned}$$

Proof

Write \(\mathbf{x}_n^*\mathbf{A}^{-1}(z)\mathbf{x}_n-E\mathbf{x}_n^*\mathbf{A}^{-1}(z)\mathbf{x}_n\) as the sum of a martingale difference sequence. Denote \(E_k(\cdot )\) as the conditional expectation given \(\{X_{ij},\,k<i,\,j\le n\}.\)

$$\begin{aligned}&\mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {x}_n-E\mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {x}_n\\&\quad =\sum _{k=1}^n\left( E_{k-1}-E_k\right) \mathbf{x}_n^*\mathbf{A}^{-1}(z)\mathbf{x}_n\\&\quad =\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\left( \mathbf {A}^{-1}(z)-\mathbf {A}_k^{-1}(z)\right) \mathbf {x}_n\\&\quad =\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}^{-1}(z)\left( \mathbf {A}_k(z)-\mathbf {A}(z)\right) \mathbf {A}_k^{-1}(z)\mathbf {x}_n\\&\quad ={-}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}^{-1}(z) \left( \mathbf {w}_k\mathbf {e}_k^*+\mathbf {e}_k\mathbf {w}_k^*\right) \mathbf {A}_k^{-1}(z)\mathbf {x}_n\\&\quad :=\phi _{n1}+\phi _{n2}. \end{aligned}$$

By (14) and (12), we further decompose \(\phi _{n1}\) as

$$\begin{aligned} \phi _{n1}= & {} {-}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {w}_k\mathbf {e}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\\= & {} z^{-1}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) x_k\mathbf {x}_n^*\mathbf {A}_{k1}^{-1}(z)\mathbf {w}_k\alpha _k\\= & {} z^{-1}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) x_k \left( \mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\alpha _k -\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {e}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\alpha _k\right) \\= & {} z^{-1}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) x_k\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\alpha _k\\&+z^{-2}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \left| x_k\right| ^2\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\alpha _k\\= & {} z^{-1}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) x_k\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\alpha _k -z^{-1}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \left| x_k\right| ^2\alpha _k\\:= & {} \phi _{n11}+\phi _{n12}. \end{aligned}$$

Similar to \(\phi _{n1},\) we obtain

$$\begin{aligned} \phi _{n2}= & {} {-}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {e}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\\= & {} {-}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}_{k2}^{-1}(z)\mathbf {e}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\alpha _k\\= & {} {-}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^* \left( \mathbf {A}_k^{-1}(z)-\mathbf {A}_k^{-1}(z)\mathbf {w}_k\mathbf {e}_k^*\mathbf {A}_k^{-1}(z)\right) \mathbf {e}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\alpha _k\\= & {} {-}\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {e}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\alpha _k\\&+\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\mathbf {e}_k^*\mathbf {A}_k^{-1}(z)\mathbf {e}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\alpha _k\\= & {} \sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-1}\bar{x}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\alpha _k\\&-\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-1}\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\alpha _k\\:= & {} \phi _{n21}+\phi _{n22}. \end{aligned}$$

Notice that \(\phi _{nij},\,i,\,j=1,\,2\) are martingale difference sequence, for any \(l\ge 1,\) we conclude from Lemmas 13(b) and 16 that

$$\begin{aligned} E\left| \phi _{n11}\right| ^{2l}\le & {} { CE} \left( \sum _{k=1}^nE_k\left| \left( E_{k-1}-E_k\right) x_k \mathbf{x}_n^*\mathbf{A}_k^{-1}(z)\mathbf{w}_kz^{-1}\alpha _k\right| ^2\right) ^l\\&+C\sum _{k=1}^nE\left| \left( E_{k-1}-E_k\right) x_k \mathbf{x}_n^*\mathbf{A}_k^{-1}(z)\mathbf{w}_kz^{-1}\alpha _k\right| ^{2l}\\\le & {} { CE}\left( \sum _{k=1}^n\left| x_k\right| ^2E_k\left| \mathbf{x}_n^*\mathbf{A}_k^{-1}(z)\mathbf{w}_k\right| ^2\right) ^l +C\sum _{k=1}^n\left| x_k\right| ^{2l}E\left| \mathbf{x}_n^*\mathbf{A}_k^{-1}(z)\mathbf{w}_k\right| ^{2l} \\\le & {} \dfrac{C}{n^lv^l}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^l+\dfrac{C}{n^{l/2+2}v^l}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^l. \end{aligned}$$

As in dealing with \(E|\phi _{n11}|^{2l},\) similarly we obtain

$$\begin{aligned} E\left| \phi _{n21}\right| ^{2l}\le \dfrac{C}{n^lv^l}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^l+\dfrac{C}{n^{l/2+2}v^l}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^l. \end{aligned}$$

Since \(\alpha _k=\gamma _k-z^{-1}\alpha _k\gamma _k\xi _k\) and \((E_{k-1}-E_k)\gamma _k=0,\) we have

$$\begin{aligned} \phi _{n12}=z^{-2}\sum _{k=1}^n\left( E_{k-1}-E_k\right) \left| x_k\right| ^2\alpha _k\gamma _k\xi _k. \end{aligned}$$

Again, by Lemmas 13(b) and 9, it follows that

$$\begin{aligned} E\left| \phi _{n12}\right| ^{2l}\le & {} { CE} \left( \sum _{k=1}^n\left| x_k\right| ^4E_k\left| \xi _k\right| ^2\right) ^l+C\sum _{k=1}^n\left| x_k\right| ^{4l}E\left| \xi _k\right| ^{2l}\\\le & {} \dfrac{C}{n^lv^l}\left( 1+\Delta /v\right) ^l+\dfrac{C}{n^{l+1}v^{2l-1}}(1+\Delta /v). \end{aligned}$$

Now, we turn to term \(\phi _{n22}.\) Substitute \(\alpha _k=\gamma _k-z^{-1}\alpha _k\gamma _k\xi _k\) into \(\phi _{n22},\) and note that

$$\begin{aligned}&\left( \text {E}_{k-1}-\text {E}_k\right) \mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\gamma _k\\&\quad =\text {E}_{k-1}\gamma _k\left( \mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k -n^{-1}\mathbf {x}_n^*\mathbf {A}_k^{-1}(z) \left( \mathbf {I}-\mathbf {e}_k\mathbf {e}_k^*\right) \mathbf {A}_k^{-1}(z)\mathbf {x}_n \right) \\&\quad =\text {E}_{k-1}\gamma _k\left( \mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k -n^{-1}\left( \mathbf {x}_n^*\mathbf {A}_k^{-2}(z)\mathbf {x}_n -\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {e}_k\mathbf {e}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\right) \right) \\&\quad =\text {E}_{k-1}\gamma _k\left( \mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k -n^{-1}\left( \mathbf {x}_n^*\mathbf {A}_k^{-2}(z)\mathbf {x}_n-z^{-2}\left| x_k\right| ^2\right) \right) \\&\quad =\text {E}_{k-1}\gamma _k\eta _k. \end{aligned}$$

We further decompose \(\phi _{n22}\) as

$$\begin{aligned} \phi _{n22}= & {} {-}\sum _{k=1}^nz^{-1}\text {E}_{k-1}\gamma _k\eta _k +\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-2} \left( \mathbf {w}_k^*\mathbf {A}_k^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_k^{-1}(z)\mathbf {w}_k\right) \alpha _k\gamma _k\xi _k\\&-\left( \sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-2}\dfrac{1}{n} \left( \mathbf {x}_n^*\mathbf {A}_k^{-2}(z)\mathbf {x}_n-z^{-2}\left| x_k\right| ^2\right) \alpha _k\gamma _k\xi _k\right. \\&\left. -\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-2}\dfrac{1}{n} \left( \mathbf {x}_n^*\mathbf {A}_k^{-2}(z)\mathbf {x}_n-z^{-2}\left| x_k\right| ^2\right) \alpha _k\gamma _k\xi _k\right) \\= & {} {-}\sum _{k=1}^nz^{-1}\text {E}_{k-1}\gamma _k\eta _k +\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-2}\eta _k\alpha _k\gamma _k\xi _k\\&+\sum _{k=1}^n\left( \text {E}_{k-1}-\text {E}_k\right) z^{-2}\dfrac{1}{n} \left( \mathbf {x}_n^*\mathbf {A}_k^{-2}(z)\mathbf {x}_n-z^{-2}\left| x_k\right| ^2\right) \alpha _k\gamma _k\xi _k\\:= & {} \phi _{n221}+\phi _{n222}+\phi _{n223}. \end{aligned}$$

By Lemma 16, it is easy to verify that

$$\begin{aligned} E\left| \eta _k\right| ^{2l}\le \dfrac{C}{n^{2l}v^{2l}}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^{2l} +\dfrac{C}{n^{l+2}v^{2l}}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^{2l}. \end{aligned}$$

Therefore, by Lemma 13(b), it leads to

$$\begin{aligned} E\left| \phi _{n22j}\right| ^{2l}\le \dfrac{C}{n^lv^{2l}}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^{2l}, \quad \mathrm{for}\,j=1,\,2,\,3. \end{aligned}$$

Combined the above results together, we obtain

$$\begin{aligned} E\left| s_n^H(z)-Es_n^H(z)\right| ^{2l}\le \dfrac{C}{n^{l/2+2}v^l}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^l +\dfrac{C}{n^lv^{2l}}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^{2l}. \end{aligned}$$

Note that

$$\begin{aligned} E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^{2l} \le { CE}\left| s_n^H(z)-Es_n^H(z)\right| ^{2l}+C\left( 1+\Delta ^H/v\right) ^{2l}. \end{aligned}$$

For \(z\in {\mathcal D},\) that is \(v\ge C_0n^{-1/2},\) we can choose \(C_0\) large enough, such that \(\dfrac{C}{n^lv^{2l}}\le 2/3.\) Therefore,

$$\begin{aligned} E\left| s_n^H(z)-Es_n^H(z)\right| ^{2l} \le \dfrac{C}{n^{l/2+2}v^l}E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^l+\dfrac{C}{n^lv^{2l}}\left( 1+\Delta /v\right) ^{2l}. \end{aligned}$$
(28)

Next, we use induction to treat the term \(E(\mathfrak {I}(s_n^H(z)))^l\) for \(l>1.\)

When \(1/2<l<1,\) applying Lemma 13(a) to \(E|\phi _{nij}|^{2l},\) we have

$$\begin{aligned} E\left| s_n^H(z)-Es_n^H(z)\right| ^{2l}\le & {} C\sum _{i,j=1}^2E\left| \phi _{nij}\right| ^{2l}\\\le & {} \dfrac{C}{n^lv^{2l}}\left( 1+\Delta ^H/v\right) ^l<C. \end{aligned}$$

This shows that for \(1<p<2,\)

$$\begin{aligned} E\left( \mathfrak {I}\left( s_n^H(z)\right) \right) ^p\le & {} 2E\left| s_n^H(z)-Es_n^H(z)\right| ^p+2\left| Es_n^H(z)\right| ^p\\\le & {} C\left( 1+\left( 1+\Delta ^H/v\right) ^p\right) . \end{aligned}$$

Thus the lemma follows for \(1<l<2\) by substituting the result of \(E(\mathfrak {I}(s_n^H(z)))^p\) into (28). Therefore, the lemma holds by using induction and (28). This completes the proof of lemma 11. \(\square \)

Lemma 12

Under the conditions in Theorem 1, for any fixed \(t>0,\)

$$\begin{aligned} \int _3^{\infty } \left| { EH}^{\mathbf{W}_n}(x)-F(x)\right| dx=o\left( n^{-t}\right) . \end{aligned}$$

Proof

For any fixed \(t>0\) and \(x>0,\) by Lemma 17, it follows that

$$\begin{aligned} P\left( \lambda _{\max }\left( \mathbf{W}_n\right) \ge 3+x\right) \le Cn^{-(t+1)}(3+x)^{-2}. \end{aligned}$$

Note that

$$\begin{aligned} 1-H^{\mathbf{W}_n}(x)\le {\mathbf {I}}\left( \lambda _{\max }\left( \mathbf{W}_n\right) \ge x\right) ,\quad \mathrm{for}\, x\ge 0. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \int _3^{\infty }\left| { EH}^{\mathbf{W}_n}(x)-F(x)\right| dx\le & {} \int _3^{\infty }P\left( \lambda _{\max }\left( \mathbf{W}_n\right) \ge x\right) dx \\\le & {} \int _0^{\infty }Cn^{-(t+1)}(3+x)^{-2}dx \\= & {} o\left( n^{-t}\right) . \end{aligned}$$

\(\square \)

Appendix 2

Lemma 13

(Burkholder Inequalities) Let \(\{X_k\}\) be a complex martingale difference sequence with respect to the increasing \(\sigma \)-field \(\{\mathcal {F}_k\},\) and let \(\text{ E }_k\) denote the conditional expectation with respect to \(\mathcal {F}_k.\) Then we have

(a) for \(p>1,\)

$$\begin{aligned} \text{ E } \left| \sum _{k=1}^n X_k \right| ^p \le K_p \text{ E } \left( \sum _{k=1}^n \left| X_k\right| ^2 \right) ^{p/2}; \end{aligned}$$

(b) for \(p \ge 2,\)

$$\begin{aligned} \text{ E }\left| \sum _{k=1}^n X_k\right| ^p \le K_p \left( \text{ E }\left( \sum _{k=1}^n \text{ E }_{k-1}\left| X_k\right| ^2 \right) ^{p/2}+\text{ E }\sum _{k=1}^n \left| X_k\right| ^p\right) , \end{aligned}$$

where \(K_p\) is a constant which depends upon p only.

Lemma 14

(Lemma 2.6 of Silverstein and Bai 1995) Let \(z\in \mathbb {C}^+\) with \(v=\mathfrak {I}z,\, \mathbf {A}\) and \(\mathbf {B}\) Hermitian and \(\mathbf {r}\in \mathbb {C}^n.\) Then

$$\begin{aligned} \left| \text {tr}\left( (\mathbf {B}-z\mathbf {I})^{-1} -(\mathbf {B}+\mathbf {rr}^*-z\mathbf {I})^{-1}\right) \mathbf {A}\right| =\left| \frac{\mathbf {r}^*(\mathbf {B}-z\mathbf {I})^{-1}\mathbf {A} (\mathbf {B}-z\mathbf {I})^{-1}\mathbf {r}}{1+\mathbf {r}^*(\mathbf {B}-z\mathbf {I})^{-1}\mathbf {r}}\right| \le \frac{\Vert \mathbf {A}\Vert }{v}. \end{aligned}$$

Lemma 15

((1.15) in Bai and Silverstein 2004) Let \(\mathbf {Y}=(Y_1,\ldots ,Y_n),\) where \(Y_i\)’s are i.i.d. complex random variables with mean zero and variance 1. Let \(\mathbf {A}=(a_{ij})_{n\times n}\) and \(\mathbf {B}=(b_{ij})_{n\times n}\) be complex matrices. Then the following identity holds:

$$\begin{aligned}&\text {E}(\mathbf {Y}^*\mathbf {AY}-\text {tr}\mathbf {A}) (\mathbf {Y}^*\mathbf {BY}-\text {tr}\mathbf {B})\\&\quad =\left( \text {E}\left| Y_1\right| ^4-\left| \text {E}Y_1^2\right| ^2-2\right) \sum _{i=1}^na_{ii}b_{ii}+ \left| \text {E}Y_1^2\right| ^2\text {tr}\mathbf {AB}^T+\text {tr}\mathbf {AB}. \end{aligned}$$

Lemma 16

(Lemma 2.7 of Bai and Silverstein 1998) For \(\mathbf {X}=(X_1,\ldots ,X_n)^{\prime }\) with i.i.d. standardized real or complex entries such that \(\text {E}X_i=0\) and \(\text {E}|X_i|^2=1,\) and for \(\mathbf {C}\) an \(n\times n\) complex matrix, we have, for any \(p\ge 2,\)

$$\begin{aligned} \text {E}|\mathbf {X}^*\mathbf {CX}-\text {tr}\mathbf {C}|^p\le K_p\left[ \left( \text {E}\left| X_i\right| ^4\text {tr}\mathbf {CC}^*\right) ^{p/2} +\text {E}\left| X_i\right| ^{2p}\text {tr}(\mathbf {CC}^*)^{p/2}\right] , \end{aligned}$$

where \(K_p\) is a constant which depends upon p only.

Lemma 17

((5.1.16) of Bai and Silverstein 2010) Suppose that the entries of the matrix \(\mathbf {W}_n=\dfrac{1}{\sqrt{n}}(X_{ij})\) are independent (but depend on n) and satisfy

  1. (1)

    \(\text{ E }X_{jk}=0,\)

  2. (2)

    \(\text {E}|X_{jk}|^2\le \sigma ^2,\)

  3. (3)

    \(\text{ E }|X_{jk}|^l\le b(\delta _n\sqrt{n})^{l-3}\) for all \(l\ge 3,\)

where \(\delta _n\rightarrow 0\) and \(b>0.\) Then, for fixed \(\varepsilon >0\) and \(x>0,\)

$$\begin{aligned} \text{ P }\left( \lambda _{\text{ max }}\left( \mathbf {W}_n\right) \ge 2\sigma +\varepsilon +x\right) \le o\left( n^{-l}(2\sigma +\varepsilon +x)^{-2}\right) . \end{aligned}$$

Lemma 18

(Theorem 8.6 in Bai and Silverstein 2010) Under assumptions in Theorem 1, we have

$$\begin{aligned} \Delta =\left\| \text {E}F^{W_n}-F\right\| =O\left( n^{-1/2}\right) . \end{aligned}$$

Lemma 19

(Lemma 8.20 in Bai and Silverstein 2010) If \(|z|<C,\,v\ge O(n^{-1/2})\) and \(l \ge 1,\) then

$$\begin{aligned} \text {E}\left| s_n(z)-\text {E}s_n(z)\right| ^{2l}\le Cn^{-2l}v^{-4l}(\Delta +v)^l, \end{aligned}$$

where \(\Delta =\Vert \text {E}F^{W_n}-F\Vert .\)

Lemma 20

(Lemma 9.1 in Bai and Silverstein 2010) Suppose that \(X_i,\,i=1,\ldots , n,\) are independent, with \(\text{ E }X_i=0,\,\text{ E }|X_i|^2=1,\,\sup \text{ E }|X_i|^4=\nu < \infty \) and \(|X_i|\le \eta \sqrt{n}\) with \(\eta >0.\) Assume that \(\mathbf {A}\) is a complex matrix. Then for any given p such that \(2\le p \le b \log (n\nu ^{-1}\eta ^4 )\) and \(b>1,\) we have

$$\begin{aligned} \text{ E }|\mathbf {\alpha }^* \mathbf {A} \mathbf {\alpha } -\text{ tr } (\mathbf {A})|^p \le \nu n^p\left( n\eta ^4\right) ^{-1} \left( 40b^2\Vert \mathbf {A}\Vert \eta ^2\right) ^p, \end{aligned}$$

where \(\mathbf {\alpha }=(X_1,\ldots , X_n)^T.\)

Truncation part

We shall prove that the underlying random variables satisfy \(X_{ii}=0\) and for \(i\ne j,\,|X_{ij}|\le \varepsilon _nn^{1/4},\, \text {E}X_{ij}=0\) and \(Var(X_{ij})=1,\) where \(\varepsilon _n\) is a sequence decreasing to 0 and \(\varepsilon _nn^{1/4}\) increasing to infinity.

1.1 Truncation

Under finite 10th moment condition, we can choose \(\varepsilon _n\) decreasing to 0 and \(\varepsilon _nn^{1/4}\) increasing to infinity as \(n\rightarrow \infty ,\) such that

$$\begin{aligned} \varepsilon _n^{-10}\text {E}\left| X_{12}\right| ^{10}\text {I}\left( \left| X_{12}\right| >\varepsilon _nn^{1/4}\right) \rightarrow 0. \end{aligned}$$

Let \(\widehat{\mathbf {X}}_n\) denote the truncated matrix whose entry on the ith row and jth column is \(X_{ij}\text {I}(|X_{ij}|\le \varepsilon _nn^{1/4}),\, i=1,\ldots ,n,\,j=1,\ldots ,n.\) Define \(\widehat{\mathbf {W}}_n=\dfrac{1}{\sqrt{n}}\widehat{\mathbf {X}}_n.\)

Step 1(a). Truncation for Theorem1.

$$\begin{aligned} P\left( \mathbf {W}_n\ne \widehat{\mathbf {W}}_n\right)\le & {} n^2P\left( \left| X_{ij}\right|>\varepsilon _nn^{1/4}\right) \\\le & {} n^2\varepsilon _n^{-10}n^{-5/2}\text {E}\left| X_{12}\right| ^{10}\text {I}\left( \left| X_{12}\right| >\varepsilon _nn^{1/4}\right) \\= & {} o\left( n^{-1/2}\right) . \end{aligned}$$

Step 1(b). Truncation for Theorems2and3.

$$\begin{aligned} P\left( \mathbf {W}_n\ne \widehat{\mathbf {W}}_n,\,i.o.\right)= & {} \lim _{k\rightarrow \infty } P\left( \mathop \cup \limits _{n=k}^\infty \mathop \cup \limits _{i=1}^n \mathop \cup \limits _{j=1}^n \left| X_{ij}\right|>\varepsilon _nn^{1/4}\right) \\= & {} \lim _{k\rightarrow \infty }P\left( \mathop \cup \limits _{t=k}^\infty \mathop \cup \limits _{n\in [2^t,2^{t+1})} \mathop \cup \limits _{i=1}^n \mathop \cup \limits _{j=1}^n\left| X_{ij}\right|>\varepsilon _nn^{1/4}\right) \\\le & {} \lim _{k\rightarrow \infty }\sum _{t=k}^\infty P\left( \mathop \cup \limits _{i=1}^{2^{t+1}} \mathop \cup \limits _{j=1}^{2^{t+1}}\left| X_{ij}\right|>\varepsilon _{2^t}2^{t/4}\right) \\\le & {} \lim _{k\rightarrow \infty }\sum _{t=k}^\infty \left( 2^{t+1}\right) ^2 P\left( \left| X_{12}\right| >\varepsilon _{2^t} 2^{t/4}\right) \\\le & {} \lim _{k\rightarrow \infty }\sum _{t=k}^\infty \sum _{l=t}^\infty 4^t P\left( \varepsilon _{2^l}2^{l/4}<\left| X_{12}\right| \le \varepsilon _{2^{l+1}}2^{(l+1)/4}\right) \\= & {} \lim _{k\rightarrow \infty }\sum _{l=k}^\infty \sum _{t=k}^l 4^t P\left( \varepsilon _{2^l}2^{l/4}<\left| X_{12}\right| \le \varepsilon _{2^{l+1}}2^{(l+1)/4}\right) \\\le & {} \lim _{k\rightarrow \infty }\sum _{l=k}^\infty \varepsilon _{2^l}^{-8}\text {E}\left| X_{12}\right| ^8\text {I}\left( \varepsilon _{2^l}2^{l/4}<\left| X_{12}\right| \le \varepsilon _{2^{l+1}}2^{(l+1)/4}\right) \\= & {} 0. \end{aligned}$$

1.2 Removing diagonal entries

Based on step 1, we can assume that \(\mathbf {W}_n=\dfrac{1}{\sqrt{n}}(X_{ij}\text {I}(|X_{ij}|\le \varepsilon _nn^{1/4}))_{i,j=1}^n.\) Let \(\mathbf {W}_n^0=\dfrac{1}{\sqrt{n}}(X_{ij}\text {I}(|X_{ij}|\le \varepsilon _nn^{1/4})(1-\delta _{ij}))_{i,j=1}^n.\) Here \(\delta _{ij}=1\) or 0 according to \(i=j,\) or \(i\ne j.\)

Step 2(a). Removing diagonal entries for Theorem1.

$$\begin{aligned}&\left\| \text {E}\left( \mathbf {W}_n-\mathbf {W}_n^0\right) \right\| \\&\quad =\dfrac{1}{\sqrt{n}}\left\| \text {E}\left( \text {diag}\left( X_{11}\text {I}\left( \left| X_{11}\right| \le \varepsilon _nn^{1/4}\right) ,\ldots , X_{nn}\text {I}\left( \left| X_{nn}\right| \le \varepsilon _nn^{1/4}\right) \right) \right) \right\| \\&\quad =\dfrac{1}{\sqrt{n}}\left\| \text {E}\left( \text {diag}\left( X_{11}\text {I}\left( \left| X_{11}\right|>\varepsilon _nn^{1/4}\right) ,\ldots , X_{nn}\text {I}\left( \left| X_{nn}\right|>\varepsilon _nn^{1/4}\right) \right) \right) \right\| \\&\quad =\dfrac{1}{\sqrt{n}}\text {E}\left| X_{11}\right| \text {I}\left( \left| X_{11}\right| >\varepsilon _nn^{1/4}\right) \\&\quad =o\left( n^{-1/2}\right) . \end{aligned}$$

Step 2(b). Removing diagonal entries for Theorems2and3.

$$\begin{aligned} \left\| \mathbf {W}_n-\mathbf {W}_n^0\right\|= & {} \dfrac{1}{\sqrt{n}}\left\| \text {diag}\left( X_{11}\text {I}\left( \left| X_{11}\right| \le \varepsilon _nn^{1/4}\right) ,\ldots , X_{nn}\text {I}\left( \left| X_{nn}\right| \le \varepsilon _nn^{1/4}\right) \right) \right\| \\= & {} \dfrac{1}{\sqrt{n}}\varepsilon _nn^{1/4} =o\left( n^{-1/4}\right) . \end{aligned}$$

1.3 Centralization

Suppose that \(z\in {\mathcal D}\) and denote \(\widehat{\mathbf {W}}_n=\dfrac{1}{\sqrt{n}}(\widehat{X}_{ij}),\) where

$$\begin{aligned} \widehat{X}_{ij}=X_{ij}\text {I}\left( \left| X_{ij}\right| \le \varepsilon _nn^{1/4}\right) -\text {E}X_{ij}\text {I}\left( \left| X_{ij}\right| \le \varepsilon _nn^{1/4}\right) . \end{aligned}$$

Centralization for Theorem1.

$$\begin{aligned} \text {E}\left| s_{H^{W_n}}(z)-s_{H^{\widehat{W}_n}}(z)\right|= & {} \text {E}\left| \mathbf {x}_n^*\left( \mathbf {W}_n-z\mathbf {I}\right) ^{-1}\mathbf {x}_n-\mathbf {x}_n^*\left( \widehat{\mathbf {W}}_n-z\mathbf {I}\right) ^{-1}\mathbf {x}_n\right| \\\le & {} \dfrac{C}{\sqrt{n}}\left[ \left| \text {E}X_{12}\text {I}\left( \left| X_{ij}\right| \le \varepsilon _nn^{1/4}\right) \right| \left\| \mathbf {1}_n\right\| \left\| \mathbf {1}_n^{\prime }\right\| \right. \\&\left. \left( \text {E}\left\| \mathbf {x}_n^*\left( \mathbf {W}_n-z\mathbf {I}\right) ^{-1}\right\| ^2\right) ^{1/2} \left( \text {E}\left\| \left( \widehat{\mathbf {W}}_n-z\mathbf {I}\right) ^{-1}\mathbf {x}_n\right\| ^2\right) ^{1/2}\right] \\\le & {} C\sqrt{n}v^{-1}\left| \text {E}X_{12}\text {I}\left( \left| X_{ij}\right| >\varepsilon _nn^{1/4}\right) \right| \\= & {} o\left( n^{-1/2}\right) . \end{aligned}$$

Centralization for Theorems2and3.

$$\begin{aligned} \left| s_{H^{W_n}}(z)-s_{H^{\widehat{W}_n}}(z)\right|= & {} \left| \mathbf {x}_n^*\left( \mathbf {W}_n-z\mathbf {I}\right) ^{-1}\mathbf {x}_n-\mathbf {x}_n^*\left( \widehat{\mathbf {W}}_n-z\mathbf {I}\right) ^{-1}\mathbf {x}_n\right| \\\le & {} \left\| \left( \mathbf {W}_n-z\mathbf {I}\right) ^{-1}\right\| \left\| \mathbf {W}_n-\widehat{\mathbf {W}}_n\right\| \left\| \left( \widehat{\mathbf {W}}_n-z\mathbf {I}\right) ^{-1}\right\| \\\le & {} \dfrac{C}{v^2}\left\| \mathbf {W}_n-\widehat{\mathbf {W}}_n\right\| \\= & {} \dfrac{C}{v^2}\dfrac{1}{\sqrt{n}}\left| \text {E}X_{12}\text {I}\left( \left| X_{ij}\right| \le \varepsilon _nn^{1/4}\right) \right| \left\| \mathbf {1}_n\right\| \left\| \mathbf {1}_n^{\prime }\right\| \\\le & {} C\sqrt{n}v^{-2}\left| \text {E}X_{12}\text {I}\left( \left| X_{ij}\right| >\varepsilon _nn^{1/4}\right) \right| \\= & {} o\left( n^{-1/4}\right) . \end{aligned}$$

1.4 Rescaling

The rescaling procedures for the three theorems are exactly the same, and only eighth moment is required. Thus we treat them uniformly. Write \(\mathbf {W}_n=\dfrac{1}{\sqrt{n}}(\widehat{X}_{ij}),\) where \(\widehat{X}_{ij}=X_{ij}\text {I}(|X_{ij}|\le \varepsilon _nn^{1/4})-\text {E}X_{ij}\text {I}(|X_{ij}|\le \varepsilon _nn^{1/4}).\) And \(\widetilde{\mathbf {W}}_n=\dfrac{1}{\sqrt{n}}(Y_{ij}),\) where \(Y_{ij}=X_{ij}/\sigma _1\) and \(\sigma _1^2=\text {E}|X_{12}\text {I}(|X_{12}|\le \varepsilon _nn^{1/4})-\text {E}X_{12}\text {I}(|X_{12}|\le \varepsilon _nn^{1/4})|^2.\) Notice that \(\sigma _1\le 1,\) and \(\sigma _1\) tends to 1 as n goes to \(\infty .\) For \(z\in {\mathcal D},\) we obtain

$$\begin{aligned} \left| s_{H^{W_n}}(z)-s_{H^{\widetilde{W}_n}}(z)\right|= & {} \left| x_n^*\left( W_n-zI\right) ^{-1}\left( W_n-\widetilde{W}_n\right) \left( \widetilde{W}_n-zI\right) ^{-1}x_n\right| \\\le & {} \dfrac{1}{v^2}\left\| \left( 1-\sigma _1^{-1}\right) W_n\right\| \, (\text {by Lemma}\,17)\\\le & {} \dfrac{C}{v^2}\left( 1-\sigma _1\right) \\\le & {} \dfrac{C}{v^2}\left( 1-\sigma _1^2\right) \\\le & {} Cv^{-2}\text {E}\left| X_{12}\right| ^2\text {I}\left( \left| X_{12}\right| >\varepsilon _nn^{1/4}\right) \\= & {} o\left( n^{-1/2}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, N., Bai, Z. Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices. Stat Papers 60, 983–1015 (2019). https://doi.org/10.1007/s00362-016-0860-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0860-x

Keywords

Navigation