Skip to main content
Log in

Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-AMP:

5′ Adenosine monophosphate

Adcy/ADCY:

Gene/protein for adenylyl cyclase

BSA:

Bovine serum albumin

cAMP:

Cyclic adenosine monophosphate

Car2 :

Gene for carbonic anhydrase 2

cGMP:

Cyclic guanosine monophosphate

CREB:

Protein for cAMP response element-binding protein

Cyp11a :

Gene for cytochrome P450 side chain cleavage enzyme

Cyp17a :

Gene for 17α-hydroxylase/C17–20 lyase

DHT:

Dihydrotestosterone

Gapdh :

Gene for glyceraldehyde 3-phosphate dehydrogenase

GATA4:

Protein for GATA4

Gucy/GUCY:

Gene/protein for guanylyl cyclases

Hsd17b :

Gene for hydroxysteroid dehydrogenase 17β

Hsd3b/HSD3B:

Gene/protein for hydroxysteroid dehydrogenase 3β

LH:

Luteinizing hormone

Lhr/LHR:

Gene/protein for luteinizing hormone receptor

LIPE:

Protein for hormone-sensitive lipase

Nos/NOS:

Gene/protein for nitric oxide synthase

Pde/PDE:

Gene/protein for phosphodiesterase

Prka/PRKA:

Gene/protein for cAMP-dependent protein kinase

Prkac :

Gene for cAMP-dependent protein kinase, catalytic subunit

Prkar :

Gene for cAMP-dependent protein kinase, regulatory subunit

Prkg/PRKG:

Gene/protein for cGMP-dependent protein kinase

RIA:

Radioimmunoassay

ROS:

Reactive oxygen species

RQ-PCR:

Relative quantification polymerase chain reaction

SCN:

Suprachiasmatic nucleus

SF1:

Protein for steroidogenic factor 1

Star/StAR:

Gene/protein for steroidogenic acute regulatory protein

T:

Testosterone

ZT:

Zeitgeber (German: “time giver”) time

References

  • Andric SA, Janjic MM, Stojkov NJ, Kostic TS (2007) Protein kinase G-mediated stimulation of basal Leydig cell steroidogenesis. Am J Physiol Endocrinol Metab 293(5):E1399–E1408

    Article  CAS  PubMed  Google Scholar 

  • Andric SA, Janjic MM, Stojkov NJ, Kostic TS (2010a) Testosterone-induced modulation of nitric oxide-cGMP signaling pathway and androgenesis in the rat Leydig cells. Biol Reprod 83(3):434–442

    Article  CAS  PubMed  Google Scholar 

  • Andric SA, Janjic MM, Stojkov NJ, Kostic TS (2010b) Sildenafil treatment in vivo stimulates Leydig cell steroidogenesis via the cAMP/cGMP signaling pathway. Am J Physiol Endocrinol Metab 299(4):E544–E550

    Article  CAS  PubMed  Google Scholar 

  • Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA (2014) Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 35(2):195–233

    Article  CAS  PubMed  Google Scholar 

  • Baburski AZ, Sokanovic SJ, Janjic MM, Stojkov-Mimic NJ, Bjelic MM, Andric SA, Kostic TS (2015) Melatonin replacement restores the circadian behavior in adult rat Leydig cells after pinealectomy. Mol Cell Endocrinol 413:26–35

    Article  CAS  PubMed  Google Scholar 

  • Baburski AZ, Sokanovic SJ, Bjelic MM, Radovic SM, Andric SA, Kostic TS (2016) Circadian rhythm of the Leydig cells endocrine function is attenuated during aging. Exp Gerontol 73:5–13

    Article  CAS  PubMed  Google Scholar 

  • Beattie MC, Chen H, Fan J, Papadopoulos V, Miller P, Zirkin BR (2013) Aging and luteinizing hormone effects on reactive oxygen species production and DNA damage in rat Leydig cells. Biol Reprod 88(4):100

    Article  PubMed  PubMed Central  Google Scholar 

  • Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75:725–748

    CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  • Berk BC, Yan C (2001) Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104:2338–2343

    Article  PubMed  Google Scholar 

  • Bjelic MM, Stojkov NJ, Baburski AZ, Sokanovic SJ, Mihajlovic AI, Janjic MM, Kostic TS, Andric SA (2014) Molecular adaptations of testosterone-producing Leydig cells during systemic in vivo blockade of the androgen receptor. Mol Cell Endocrinol 396(1–2):10–25

    Article  CAS  PubMed  Google Scholar 

  • Chang JC, Oude-Elferink RP (2014) Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Front Physiol 10(5):42

    Google Scholar 

  • Chen H, Hardy MP, Zirkin BR (2002) Age-related decreases in Leydig cell testosterone production are not restored by exposure to LH in vitro. Endocrinology 143(5):1637–1642

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu J, Luo L, Zirkin BR (2004) Dibutyrylcyclicadenosinemonophosphate restores the ability of aged Leydig cells to produce testosterone at the high levels characteristic of young cells. Endocrinology 145(10):4441–4446

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ge RS, Zirkin BR (2009) Leydig cells: from stem cells to aging. Mol Cell Endocrinol 306(1–2):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  CAS  PubMed  Google Scholar 

  • Culty M, Luo L, Yao ZX, Chen H, Papadopoulos V, Zirkin BR (2002) Cholesterol transport, peripheral benzodiazepine receptor, and steroidogenesis in aging Leydig cells. J Androl 23(3):439–447

    CAS  PubMed  Google Scholar 

  • Davidoff MS, Middendorff R, Mayer B, Holstein AF (1995) Nitric oxide synthase (NOS-I) in Leydig cells of the human testis. Arch Histol Cytol 58(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Davidoff MS, Middendorff R, Mayer B, deVente J, Koesling D, Holstein AF (1997) Nitric oxide/cGMP pathway components in the Leydig cells of the human testis. Cell Tissue Res 287(1):161–170

    Article  CAS  PubMed  Google Scholar 

  • Dufau ML (1998) The luteinizing hormone receptor. Annu Rev Physiol 60:461–496

    Article  CAS  PubMed  Google Scholar 

  • Feil R, Hölter SM, Weindl K, Wurst W, Langmesser S, Gerling A, Feil S, Albrecht U (2009) cGMP-dependent protein kinase I, the circadian clock, sleep and learning. Commun Integr Biol 2(4):298–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, Smolenski A (2003) cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem 278:29640–29648

    Article  CAS  PubMed  Google Scholar 

  • Gillette MU, Mitchell JW (2002) Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res 309:99–107

    Article  CAS  PubMed  Google Scholar 

  • Golkowski M, Shimizu-Albergine M, Suh HW, Beavo JA, Ong SE (2016) Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics. Cell Signal 28(7):764–778

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17:2637–2644

    CAS  PubMed  Google Scholar 

  • Hikim AP, Vera Y, Vernet D, Castanares M, Diaz-Romero M, Ferrini M, Swerdloff RS, Gonzalez-Cadavid NF, Wang C (2005) Involvement of nitric oxide-mediated intrinsic pathway signaling in age-related increase in germ cell apoptosis in male Brown-Norway rats. J Gerontol A Biol Sci Med Sci 60(6):702–708

    Article  PubMed  Google Scholar 

  • Kostic TS, Andric SA, Stojilkovic SS (2001) Spontaneous and receptor controlled soluble guanylyl cyclase activity in anterior pituitary cells. Mol Endocrinol 15(6):1010–1022

    Article  CAS  PubMed  Google Scholar 

  • Kostic TS, Stojkov NJ, Janjic MM, Andric SA (2010) Structural complexity of the testis and PKG I/StAR interaction regulate the Leydig cell adaptive response to repeated immobilization stress. Int J Androl 33(5):717–729

    Article  CAS  PubMed  Google Scholar 

  • Lavoie HA, King SR (2009) Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med 234(8):880–907

    Article  CAS  Google Scholar 

  • Lin T, Vinson NE, Murono EP, Osterman J, Nankin HR (1983) The aging Leydig cell. VIII. Protein kinase activity. J Androl 4(5):324–330

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Chen H, Zirkin BR (1996) Are Leydig cell steroidogenic enzymes differentially regulated with aging? J Androl 17(5):509–515

    CAS  PubMed  Google Scholar 

  • Luo L, Chen H, Zirkin BR (2005) Temporal relationships among testosterone production, steroidogenic acute regulatory protein (StAR), and P450 side-chain cleavage enzyme (P450scc) during Leydig cell aging. J Androl 26(1):25–31

    CAS  PubMed  Google Scholar 

  • Oster H, van der Horst GT, Albrecht U (2003a) Daily variation of clock output gene activation in behaviorally arrhythmic mPer/mCry triple mutant mice. Chronobiol Int 20(4):683–695

    Article  CAS  PubMed  Google Scholar 

  • Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U (2003b) cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 13:725–733

    Article  CAS  PubMed  Google Scholar 

  • Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25(6):947–970

    Article  CAS  PubMed  Google Scholar 

  • Plano SA, Agostino PV, de la Iglesia HO, Golombek DA (2012) cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents. PLoS One 7(5):e37121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerantz DK, Pitelka V (1998) Nitric oxide is a mediator of the inhibitory effect of activated macrophages on production of androgen by the Leydig cell of the mouse. Endocrinology 139(3):922–931

    CAS  PubMed  Google Scholar 

  • Poteracki J, Walsh KM (1998) Spontaneous neoplasms in control Wistar rats: a comparison of reviews. Toxicol Sci 45(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Prosser RA, McArthur AJ, Gillette MU (1989) cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects. Proc Natl Acad Sci USA 86:6812–6815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qamar I, Park E, Gong EY, Lee HJ, Lee K (2009) ARR19 (androgen receptor corepressor of 19 kDa), an antisteroidogenic factor, is regulated by GATA-1 in testicular Leydig cells. J Biol Chem 284(27):18021–18032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu-Albergine M, Tsai LC, Patrucco E, Beavo JA (2012) cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis. Mol Pharmacol 81:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokanovic SJ, Baburski AZ, Janjic MM, Stojkov NJ, Bjelic MM, Lalosevic D, Andric SA, Stojilkovic SS, Kostic TS (2013) The opposing roles of nitric oxide and cGMP in the age-associated decline in rat testicular steroidogenesis. Endocrinology 154(10):3914–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokanovic SJ, Janjic MM, Stojkov NJ, Baburski AZ, Bjelic MM, Andric SA, Kostic TS (2014) Age related changes of cAMP and MAPK signaling in Leydig cells of Wistar rats. Exp Gerontol 58:19–29

    Article  CAS  PubMed  Google Scholar 

  • Stocco DM, Wang X, Jo Y, Manna PR (2005) Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19(11):2647–2659

    Article  CAS  PubMed  Google Scholar 

  • Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84(1):137–167

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi N, Fujisawa M, Kanzaki M, Okuda Y, Okada H, Arakawa S, Kamidono S (1997) Nitric oxide production by cultured rat Leydig cells. Endocrinology 138(3):994–998

    Article  CAS  PubMed  Google Scholar 

  • Tischau SA, Weber ET, Abbott SM, Mitchell JW, Gillette MU (2003) Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J Neurosci 23(20):7543–7550

    Google Scholar 

  • Tsai LC, Beavo JA (2011) The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr Opin Pharmacol 11(6):670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenti S, Cuttica CM, Fazzuoli L, Giordano G, Giusti M (1999) Biphasic effect of nitric oxide on testosterone and cyclic GMP production by purified rat Leydig cells cultured in vitro. Int J Androl 22(5):336–341

    Article  CAS  PubMed  Google Scholar 

  • Weissman BA, Niu E, Ge R, Sottas CM, Holmes M, Hutson JC, Hardy MP (2005) Paracrine modulation of androgen synthesis in rat Leydig cells by nitric oxide. J Androl 26(3):369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Professor Gordon Niswender (Colorado State University) for supplying antibodies for radioimmunoassay analysis. Also, we are thankful to Ms Marica Jovic for technical assistance. Figure 2a is reused from Experimental Gerontology 73 (2016) 5–13 (license number 3895230854733).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana S. Kostic.

Ethics declarations

Grants

Supported by the Serbian Ministry of Science grant No. 173057 and the Autonomic Province of Vojvodina Grant No. 2856.

Conflict of interest

The authors have nothing to disclose.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baburski, A.Z., Sokanovic, S.J., Andric, S.A. et al. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells. J Comp Physiol B 187, 613–623 (2017). https://doi.org/10.1007/s00360-016-1052-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1052-7

Keywords

Navigation