Skip to main content
Log in

Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present article, the hygro-thermal wave propagation properties of single-layered graphene sheets (SLGSs) are investigated for the first time employing a nonlocal strain gradient theory. A refined higher-order two-variable plate theory is utilized to derive the kinematic relations of graphene sheets. Here, nonlocal strain gradient theory is used to achieve a more precise analysis of small-scale plates. In the framework of the Hamilton’s principle, the final governing equations are developed. Moreover, these obtained equations are deemed to be solved analytically and the wave frequency values are achieved. Some parametric studies are organized to investigate the influence of different variants such as nonlocal parameter, length scale parameter, wave number, temperature gradient and moisture concentration on the wave frequency of graphene sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  3. M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41(9), 1651–1655 (2009)

    Article  Google Scholar 

  4. Y.Z. Wang, F.M. Li, K. Kishimoto, Scale effects on the longitudinal wave propagation in nanoplates. Phys. E 42(5), 1356–1360 (2010)

    Article  Google Scholar 

  5. P. Malekzadeh, A.R. Setoodeh, A.A. Beni, Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos. Struct. 93(7), 1631–1639 (2011)

    Article  Google Scholar 

  6. S. Narendar, S. Gopalakrishnan, Temperature effects on wave propagation in nanoplates. Compos. Part B: Eng. 43(3), 1275–1281 (2012)

    Article  MATH  Google Scholar 

  7. S. Narendar, S. Gopalakrishnan, Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects. Int. J. Mech. Sci. 64(1), 221–231 (2012)

    Article  Google Scholar 

  8. M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37(7), 4787–4797 (2013)

    Article  MathSciNet  Google Scholar 

  9. M. Ghadiri, N. Shafiei, Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst. Technol. 22(12), 2853–2867 (2016)

    Article  Google Scholar 

  10. F. Ebrahimi, F. Ghasemi, E. Salari, Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51(1), 223–249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Ebrahimi, M.R. Barati, A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment. Appl. Phys. A 122(9), 792 (2016)

    Article  ADS  Google Scholar 

  12. F. Ebrahimi, M.R. Barati, P. Haghi, Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams. Eur. Phys. J. Plus 131(11), 383 (2016)

    Article  Google Scholar 

  13. F. Ebrahimi, M.R. Barati, A. Dabbagh, Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl. Phys. A 122(11), 949 (2016)

    Article  ADS  Google Scholar 

  14. F. Ebrahimi, A. Dabbagh, M.R. Barati, Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate. Eur. Phys. J. Plus 131(12), 433 (2016)

    Article  Google Scholar 

  15. F. Ebrahimi, S.H.S. Hosseini, Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J. Therm. Stresses 39(5), 606–625 (2016)

    Article  Google Scholar 

  16. F. Ebrahimi, A. Dabbagh, Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams. Eur. Phys. J. Plus 132, 1–15 (2017)

    Article  Google Scholar 

  17. F. Ebrahimi, M.R. Barati, A. Dabbagh, Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects. Waves Random Complex Media 1–21 (2017)

  18. D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  19. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  Google Scholar 

  21. L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    Article  Google Scholar 

  22. A. Farajpour, M.H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227(7), 1849–1867 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Ebrahimi, M.R. Barati, P. Haghi, Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams. J. Therm. Stresses 1–13 (2016)

  24. F. Ebrahimi, M.R. Barati, A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

    Article  Google Scholar 

  25. F. Ebrahimi, A. Dabbagh, On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos. Struct. 162, 281–293 (2017)

    Article  Google Scholar 

  26. F. Ebrahimi, A. Dabbagh, Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Mater. Res. Express 4(2), 025003 (2017)

    Article  ADS  Google Scholar 

  27. F. Ebrahimi, A. Dabbagh, Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory. Eur. Phys. J. Plus 132(11), 449 (2017)

    Article  Google Scholar 

  28. F. Ebrahimi, A. Dabbagh, Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. J. Electromagn. Waves Appl. 32(2), 138–169 (2018)

    Article  Google Scholar 

  29. F. Ebrahimi, A. Dabbagh, (2018). Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 0954406217748687

  30. F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory. J. Mech. Sci. Technol. 29(9), 3797–3803 (2015)

    Article  Google Scholar 

  31. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  ADS  Google Scholar 

  32. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, et al. Two-dimensional phonon transport in supported graphene. Science 328(5975), 213–216 (2010)

    Article  ADS  Google Scholar 

  33. T. Murmu, S.C. Pradhan, Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105(6), 064319 (2009)

    Article  ADS  Google Scholar 

  34. S.C. Pradhan, T. Murmu, Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Phys. E 42(5), 1293–1301 (2010)

    Article  Google Scholar 

  35. S.C. Pradhan, A. Kumar, Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93(2), 774–779 (2011)

    Article  Google Scholar 

  36. S. Rouhi, R. Ansari, Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Phys. E 44(4), 764–772 (2012)

    Article  Google Scholar 

  37. B. Arash, Q. Wang, K.M. Liew, Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Comput. Methods Appl. Mech. Eng. 223, 1–9 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. T. Murmu, M.A. McCarthy, S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 96, 57–63 (2013)

    Article  Google Scholar 

  39. A.G. Arani, E. Haghparast, H.B. Zarei, Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Phys. B 495, 35–49 (2016)

    Article  ADS  Google Scholar 

  40. A.M. Zenkour, Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Physica E 79, 87–97 (2016)

    Article  ADS  Google Scholar 

  41. F. Ebrahimi, N. Shafiei, Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation plate theory. Mech. Adv. Mater. Struct. 24(9), 761–772 (2017)

    Article  Google Scholar 

  42. W. Xiao, L. Li, M. Wang, Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory. Appl. Phys. A 123(6), 388 (2017)

    Article  ADS  Google Scholar 

  43. F. Ebrahimi, A. Dabbagh, On wave dispersion characteristics of double-layered graphene sheets in thermal environments. J. Electromagn. Waves Appl. 1–20 (2017)

  44. X. Zhu, L. Li, Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 178, 87–96 (2017)

    Article  Google Scholar 

  45. X. Zhu, L. Li, Closed form solution for a nonlocal strain gradient rod in tension. Int. J. Eng. Sci. 119, 16–28 (2017)

    Article  MathSciNet  Google Scholar 

  46. X. Zhu, L. Li, On longitudinal dynamics of nanorods. Int. J. Eng. Sci. 120, 129–145 (2017)

    Article  Google Scholar 

  47. B. Karami, D. Shahsavari, M. Janghorban, L. Li, Wave dispersion of mounted graphene with initial stress. Thin-Walled Struct. 122, 102–111 (2018)

    Article  Google Scholar 

  48. L. Li, H. Tang, Y. Hu, The effect of thickness on the mechanics of nanobeams. Int. J. Eng. Sci. 123, 81–91 (2018)

    Article  MathSciNet  Google Scholar 

  49. S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput. Mater. Sci. 65, 74–80 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Appendix

Appendix

In Eq. (32) \({k_{ij}}\) and \({m_{ij}}\), \(\left( {i,j=1,2} \right)\) are defined as follows:

$$\left\{ {\begin{array}{*{20}{c}} \begin{aligned} {k_{11}} & = - \left( {1+{\eta ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {{D_{11}}{\beta _1}^{4}+2\left( {{D_{12}}+2{D_{66}}} \right){\beta _1}^{2}{\beta _2}^{2}+{D_{22}}{\beta _2}^{4}} \right) \\ & \quad +\left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( \begin{gathered} {N^T}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right) - {k_w} \\ - {k_{px}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta )+{\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ - {k_{py}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta ) - {\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ \end{gathered} \right) \\ \end{aligned} \\ \begin{aligned} {k_{12}} & = - \left( {1+{\eta ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {D_{{11}}^{s}{\beta _1}^{4}+2\left( {D_{{12}}^{s}+2D_{{66}}^{s}} \right){\beta _1}^{2}{\beta _2}^{2}+D_{{22}}^{s}{\beta _2}^{4}} \right) \\ & \quad +\left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( \begin{gathered} {N^T}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right) - {k_w} \\ - {k_{px}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta )+{\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ - {k_{py}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta ) - {\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ \end{gathered} \right) \\ \end{aligned} \\ \begin{aligned} {k_{21}} & = - \left( {1+{\eta ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {D_{{11}}^{s}{\beta _1}^{4}+2\left( {D_{{12}}^{s}+2D_{{66}}^{s}} \right){\beta _1}^{2}{\beta _2}^{2}+D_{{22}}^{s}{\beta _2}^{4}} \right) \\ & \quad +\left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( \begin{gathered} {N^T}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right) - {k_w} \\ - {k_{px}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta )+{\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ - {k_{py}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta ) - {\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ \end{gathered} \right) \\ \end{aligned} \\ \begin{aligned} {k_{22}} & = - \left( {1+{\eta ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( \begin{gathered} H_{{11}}^{s}{\beta _1}^{4}+2\left( {H_{{12}}^{s}+2H_{{66}}^{s}} \right){\beta _1}^{2}{\beta _2}^{2}+H_{{22}}^{s}{\beta _2}^{4} \\ +A_{{55}}^{s}{\beta _1}^{2}+A_{{44}}^{s}{\beta _2}^{2} \\ \end{gathered} \right) \\ & \quad +\left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( \begin{gathered} {N^T}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right) - {k_w} \\ - {k_{px}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta )+{\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ - {k_{py}}\left( {{\beta _2}^{2}{{\sin }^2}(\theta ) - {\beta _1}{\beta _2}\sin (2\theta )+{\beta _1}^{2}{{\cos }^2}(\theta )} \right) \\ \end{gathered} \right) \\ \end{aligned} \end{array}} \right.$$
(35)
$$\left\{ {\begin{array}{*{20}{c}} {{m_{11}}= - \left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {{I_0}+{I_2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)} \\ {{m_{12}}= - \left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {{I_0}+{J_2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)} \\ {{m_{21}}= - \left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {{I_0}+{J_2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)} \\ {{m_{22}}= - \left( {1+{\mu ^2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)\left( {{I_0}+{K_2}\left( {{\beta _1}^{2}+{\beta _2}^{2}} \right)} \right)} \end{array}} \right.$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Dabbagh, A. Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets. Appl. Phys. A 124, 301 (2018). https://doi.org/10.1007/s00339-018-1734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1734-y

Navigation