Skip to main content

Advertisement

Log in

The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ground temperatures in the top few centimetres of the soil profile are key in many biological processes yet remain very poorly documented, especially in the polar regions or over longer timescales. They can vary greatly seasonally and at various spatial scales across the often highly complex and heterogeneous polar landscapes. It is challenging and often impossible to extrapolate soil profile temperatures from meteorological air temperature records. Furthermore, despite the justifiably considerable profile given to contemporary large-scale climate change trends, with the exception of some sites on Greenland, few biological microclimate datasets exist that are of sufficient duration to allow robust linkage and comparison with these large-scale trends. However, it is also clear that the responses of the soil-associated biota of the polar regions to projected climate change cannot be adequately understood without improved knowledge of how landscape heterogeneity affects ground and sub-surface biological microclimates, and of descriptions of these microclimates and their patterns and trends at biologically relevant physical and temporal scales. To stimulate research and discussion in this field, we provide an overview of multi-annual temperature records from 20 High Arctic (Svalbard) and maritime Antarctic (Antarctic Peninsula and Scotia Arc) sites. We highlight important features in the datasets that are likely to have influence on biology in polar terrestrial ecosystems, including (a) summer ground and sub-surface temperatures vary much more than air temperatures; (b) winter ground temperatures are generally uncoupled from air temperatures; (c) the ground thawing period may be considerably shorter than that of positive air temperatures; (d) ground and air freeze–thaw patterns differ seasonally between Arctic and Antarctic; (e) rates of ground temperature change are generally low; (f) accumulated thermal sum in the ground usually greatly exceeds air cumulative degree days. The primary purpose of this article is to highlight the utility and biological relevance of such data, and to this end the full datasets are provided here to enable further analyses by the research community, and incorporation in future wider comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: a
Fig. 3

Similar content being viewed by others

References

  • ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Aitchison C (1979) Winter-active subnivean invertebrates in southern Canada. 1. Collembola. Pedobiologia 19:113–120

    Google Scholar 

  • Arnold RJ, Convey P (1998) The life history of the world’s most southerly diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: dytiscidae), on sub-Antarctic South Georgia. Polar Biol 20:153–160

    Article  Google Scholar 

  • Ávila-Jiménez ML, Coulson SJ (2011) Can snow depth predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: aphididae) on Spitsbergen? BMC Ecol 11:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insects overwintering in a changing climate. J Exp Biol 213:980–994

    Article  PubMed  CAS  Google Scholar 

  • Bateni SM, Margulis SA, Podest E, McDonald KC (2015) Characterizing snowpack and the freeze-thaw state of underlying soil via assimilation of multifrequency passive/active microwave data: a case study (NASA CLPX 2003) IEEE. T Geosci Remote 53:173–189

    Article  Google Scholar 

  • Blaire S, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Aerts R, Convey P, Cooper EJ, Dalen L, Erschbamer B, Gudmundsson J, Hofgaard A, Hollister RD, Johnstone J, Jónsdóttir IS, Lebouvier M, Van De Vijver B, Wahren CH, Dorrepaal E (2013) Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Glob Change Biol 19:64–74

    Article  Google Scholar 

  • Cahoon SMP, Sullivan PF, Shaver GR, Welker JM, Post E (2012) Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol Lett 15:1415–1422

    Article  PubMed  Google Scholar 

  • Christiansen HH, Etzelmuller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Akerman HJ, Foged N, Blikra LH, Pernosky MA, Odegard RS (2010) The thermal state of permafrost in the Nordic area during the International Polar Year 2007-2009. Permafr Periglac 21:156–181

    Article  Google Scholar 

  • Cockell CS, Cordoba-Jabonero C (2004) Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats. Photochem Photobiol 79:26–31

    PubMed  CAS  Google Scholar 

  • Convey P (1996) Overwintering strategies of terrestrial invertebrates from Antarctica - the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505

    Google Scholar 

  • Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641

    Article  Google Scholar 

  • Convey P (2013) Antarctic Ecosystems. In: Levin S (ed) Encyclopedia of biodiversity. Elsevier, San Diego, pp 179–188

    Chapter  Google Scholar 

  • Convey P, Smith RIL (1997) The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander Island, maritime Antarctic. Antarct Sci 9:12–26

    Article  Google Scholar 

  • Convey P, Worland MR (2000) Refining the risk of freezing mortality for Antarctic terrestrial microarthropods. Cryo-Lett 21:333–338

    CAS  Google Scholar 

  • Convey P, Bindschadler RA, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski P, Summerhayes CP, Turner J (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563

    Article  Google Scholar 

  • Convey P, Abbandonato HDA, Bergan F, Beumer LT, Biersma EM, Bråthen VS, D’Imperio L, Jensen CK, Nilsen S, Paquin K, Stenkewitz U, Svoen ME, Winkler J, Müller E, Coulson SJ (2014a) Survival of rapidly fluctuating natural low winter temperatures by Arctic soil invertebrates. J Therm Biol. https://doi.org/10.1016/j.jtherbio.2014.07.009

    Article  PubMed  Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014b) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Cooper EJ (2004) Out of sight, out of mind: thermal acclimation of root respiration in Arctic Ranunculus. Arct Antarct Alp Res 36:308–313

    Article  Google Scholar 

  • Cooper EJ (2015) Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu Rev Ecol Evol Syst 45:71–95

    Google Scholar 

  • Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of Arctic ground organisms during winter. Arct Alp Res 27:365–371

    Article  Google Scholar 

  • Coulson SJ, Leinaas HP, Ims RA, Søvik G (2000) Experimental manipulation of the winter surface ice layer: the effects on a High Arctic ground microarthropod community. Ecography 23:299–314

    Article  Google Scholar 

  • Coulson SJ, Fjellberg A, Gwiazdowicz DJ, Lebedeva NV, Melekhina EN, Solhøy T, Erséus C, Maraldo K, Miko L, Schatz H, Schmelz RM, Søli G, Stur E (2013a) Introduction of invertebrates into the high Arctic via imported soils: the case of Barentsburg in Svalbard. Biol Invasions 15:1–5

    Article  Google Scholar 

  • Coulson SJ, Fjellberg A, Gwiazdowicz DJ, Lebedeva NV, Melekhina EN, Solhøy T, Erséus C, Maraldo K, Miko L, Schatz H, Schmelz RM, Søli G, Stur E (2013b) The invertebrate fauna of anthropogenic soils in the high Arctic settlement of Barentsburg. Svalbard. Polar Res 32:19273

    Article  Google Scholar 

  • Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma E, Boström S, Brittain J, Carlsson AM, Christoffersen KS, De Smet WH, Ekrem T, Fjellberg A, Füreder L, Gustafsson D, Gwiazdowicz DJ, Holmstrup M, Hansen LO, Holmstrup M, Kaczmarek L, Kolicka M, Kuklin V, Lakka H-K, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanaevitch A, Taskaeva A, Velle G, Zawierucha K, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470

    Article  CAS  Google Scholar 

  • Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388

    Article  Google Scholar 

  • Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SAL (2013) The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. J Insect Physiol 59:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Fick SE, Hijmans RJ (2017 In press). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol 2011:893790

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman and Littlefield, Lanham

    Google Scholar 

  • Governor of Svalbard (2014) Handlingsplan mot skadelige fremmede arter på Svalbard (in Norwegian). Sysselmannen på Svalbard, Longyearbyen

    Google Scholar 

  • Guglielmin M, Ellis-Evans CJ, Cannone N (2008) Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma 144:73–85

    Article  Google Scholar 

  • Guglielmin M, Worland MR, Cannone N (2012) Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island. Geomorphology 155:20–33

    Article  Google Scholar 

  • Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen ÅØ, Loe LE, Coulson SJ, Larsen JO, Varpe Ø (2014) Warmer, wetter, wilder winters: characteristics and implications of an extreme weather event in the High Arctic. Environ Res Lett 9:114021

    Article  Google Scholar 

  • Heilbronn TD, Walton DWH (1984) The morphology of some periglacial features on South Georgia and their relationship to local environment. Br Antarct Surv Bull 64:21–36

    Google Scholar 

  • Hisdal V (1985) Geography of Svalbard. Norwegian Polar Institute, Oslo

    Google Scholar 

  • Hodkinson ID (2003) Metabolic cold adaptation in arthropods: a smaller-scale perspective. Funct Ecol 17:562–567

    Article  Google Scholar 

  • Hughes KA, Worland MR, Thorne MAS, Convey P (2013) The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion. Biol Invasions 15:269–281

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. International panel on climate change. http://ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT.pdf. Accessed 3/11/14, 2014

  • Jagdhuber T, Stockamp J, Hajnsek I, Ludwig R (2014) Identification of soil freezing and thawing states using SAR polarimetry at C-band. Remote Sens 6:2008–2023

    Article  Google Scholar 

  • Jensen LM, Topp-Jørgensen E, Christensen TR, Schmidt NM (eds) (2016) Zackenberg Ecological Research Operations 20th Annual Report, 2014. Aarhus University, DCE – Danish Centre for Environment and Energy. pp. 134. http://zackenberg.dk/fileadmin/user_upload/ZERO_2015_web_1_Feb_17.pdf)

  • Jónsdóttir IS (2005) Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. P Roy Irish Acad B 105:155–165

    Article  Google Scholar 

  • Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Singh VP (2014) Modeling daily soil temperature using data-driven models and spatial distribution. Theor Appl Climatol 118:465–479

    Article  Google Scholar 

  • King JC, Bannister D, Hosking JS, Colwell SR (2017) Causes of the Antarctic region record high temperature at Signy Island, 30th January 1982. Atmos Sci Let. https://doi.org/10.1002/asl.793

    Article  Google Scholar 

  • Kohler J, Aanes R (2004) Effect of winter snow and ground-icing on a Svalbard reindeer population: results of a simple snowpack model. Arct Antarct Alp Res 36:333–341

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth Sci Rev 138:313–334

    Article  Google Scholar 

  • Larsen KS, Jonasson S, Michelsen A (2002) Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol 21:187–195

    Article  Google Scholar 

  • Leinaas HP (1981) Activity of arthropoda in snow within a coniferous forest, with special reference to Collembola. Holarct Ecol 4:127–138

    Google Scholar 

  • Lenoir J, Hattab T, Pierre G (2017) Climatic refugia under anthropogenic climate change: implications for species redistribution. Ecography 40:253–266

    Article  Google Scholar 

  • Lund M, Stiegler C, Abermann J, Citterio M, Hansen BU, van As D (2017) Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland. Ambio 46(suppl 1):81–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Meltofte H, Huntington HP, Barry T (2013) Introduction. In: Meltofte H (ed) Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity: Synthesis. Conservation of Arctic Flora and Fauna (CAFF), Arctic Council. Arctic Council, Akureyri, pp 9–17

    Google Scholar 

  • Migała K, Wojtuń B, Szymański W, Muskała P (2014) Soil moisture and temperature variation under different types of tundra vegetation during the growing season: a case study from the Fuglebekken catchment, SW Spitsbergen. CATENA 116:10–18

    Article  Google Scholar 

  • Morgner E, Elberling B, Strebel D, Cooper EJ (2010) The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res 29:58–74

    Article  CAS  Google Scholar 

  • Nielsen UN, Wall D (2013) The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol Lett 16:409–419

    Article  PubMed  Google Scholar 

  • Nowinski NS, Taneva L, Trumbore SE, Welker JM (2010) Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163:785–792

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GRH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77:221–238

    Article  Google Scholar 

  • Overland JE, Wang M, Bond NA, Walsh JE, Kattsov VM, Chapman WL (2011) Considerations in the selection of global climate models for regional climate projections: the Arctic as a case study. J Clim 24:1583–1597

    Article  Google Scholar 

  • Pauli JN, Zuckerberg B, Whiteman JP, Porter W (2013) The subnivium: a deteriorating seasonal refugium. Front Ecol Environ 11:260–267

    Article  Google Scholar 

  • Peck LS (2004) Physiological flexibility: the key to success and survival for Antarctic fairy shrimps in highly fluctuating extreme environments. Freshwater Biol 49:1195–1205

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Przybylak R, Araźny A, Nordli Ø, Finkelnburg R, Kejna M, Budzik T, Migała S, Sikora S, Puczko D, Rymerg K, Rachlewiczg G (2014) Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. Int J Climatol 34:3702–3719

    Article  Google Scholar 

  • Putkonen J, Roe G (2003) Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys Res Lett 30:4

    Article  Google Scholar 

  • Rautio M, Dufresne F, Laurion I, Bonilla S, Warwick SV, Christoffersen KS (2011) Shallow freshwater ecosystems of the circumpolar Arctic. EcoScience 18:204–222

    Article  Google Scholar 

  • Schmidt IK (1999) Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–160

    Article  Google Scholar 

  • Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2011) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biol 34:13–22

    Article  Google Scholar 

  • Sjöblom A (2014) Turbulent fluxes of momentum and heat over land in the High-Arctic summer: the influence of observation techniques. Polar Res 33:21567

    Article  Google Scholar 

  • Slavich E, Warton DI, Ashcroft MB, Gollan JR, Ramp D (2014) Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Divers Distrib 20:952–963

    Article  Google Scholar 

  • Smith RIL (1988) Recording bryophyte microclimate in remote and severe environments In: Glime J.M. (ed) Methods in Bryology. Proceedings of the Bryological Methods Workshop, Mainz. Hattori Botanical Laboratory, Nichinan, pp 275-284

  • SWIPA (2011) Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic monitoring and assessment programme (AMAP), Oslo, Norway

  • Tabari H, Talaee PH, Willems P (2014) Short-term forecasting of soil temperature using artificial neural network. Meteorol Appl 22:576–585

    Article  Google Scholar 

  • Toro M, Camacho A, Rochera C, Rico E, Banon M, Fernandez-Valiente E, Marco E, Justel A, Avendano MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649

    Article  Google Scholar 

  • Turner J, Bindschadler R, Convey P, di Prisco G. Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds.) (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Cambridge, xi + 526 pp

  • Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Guglielmin M, Gutt J, Jacobs S, Kennicutt MC II, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259

    Article  Google Scholar 

  • Vega GC, Pertierra LR, Olalla-Tárraga MÁ (2017) MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci Data 4:170078

    Article  Google Scholar 

  • Wagner M, Trutschnig W, Bathke AC, Ruprecht U (2017 In press) A first approach to calculate BIOCLIM variables and climate zones for Antarctica. Theor Appl Climatol

  • Walton DWH (1982) The Signy Island terrestrial reference sites. XV. Microclimate monitoring, 1972-74. Brit Antarct Surv Bull 55:111–126

    Google Scholar 

  • Wang L, Wolken GJ, Sharp MJ, Howell SEL, Derksen C, Brown RD, Markus T, Cole J (2011) Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000–2009. J Geophys Res 116:D22103

    Google Scholar 

  • West CC (1982) Life histories of three species of sub-Antarctic oribatid mite. Pedobiologia 23:59–67

    Google Scholar 

  • Westermann S, Lüers J, Langer M, Boike J (2009) The annual surface energy budget of a High-Arctic permafrost site on Svalbard. The Cryosphere 3:345–363

    Article  Google Scholar 

  • Westermann S, Langer M, Boike J (2011) Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring. Remote Sens Environ 115:908–922

    Article  Google Scholar 

  • Williams CM, Henry HAL, Sinclair BJ (2015) Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev 90:214–235

    Article  PubMed  Google Scholar 

  • Woods HA, Dillon ME, Pincebourde S (2015) The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol 54:86–97

    Article  PubMed  Google Scholar 

  • Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–525

    Article  Google Scholar 

  • Wu W, Tang XP, Guo NJ, Yang C, Liu HB, Shang YF (2013) Spatiotemporal modeling of monthly soil temperature using artificial neural networks. Theor Appl Climatol 113:481–494

    Article  Google Scholar 

Download references

Acknowledgements

We thank students taking UNIS course AB:201 Arctic Terrestrial Biology and Erlend Lorentzen (Norwegian Polar Institute) for assistance in setting out and/or recovering loggers, and the Kinnvika International Polar Year project for access and logistics to Nordaustlandet. Image of Mars Oasis (Online Resource 2) kindly provided by Kevin Newsham (British Antarctic Survey). Paul Geissler, Alison Massey and Kevin Newsham are gratefully acknowledged for the long-term maintenance and management of the Antarctic stations described. Figure 1 was kindly drawn by Oliva Martin-Sanchez (Mapping and Geographic Information Centre, British Antarctic Survey). Project work in Barentsburg was funded as part of the AVIFauna project (Norwegian Research Council 6172/S30). PC and MRW were supported by core funding from NERC to the BAS ‘Ecosystems’ and ‘Biodiversity, Evolution and Adaptation’ Programmes. This paper also contributes to the SCAR AnT-ERA and AntEco programmes. We thank the Norwegian Meteorological Institute (www.eKlima.no) and the CLEOPATRA project for access to air temperature data, and two anonymous referees and the issue Editor for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Convey.

Additional information

This article belongs to the special issue on the “Ecology of tundra arthropods”, coordinated by Toke T. Høye and Lauren E. Culler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Convey, P., Coulson, S.J., Worland, M.R. et al. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol 41, 1587–1605 (2018). https://doi.org/10.1007/s00300-018-2299-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2299-0

Keywords

Navigation