Skip to main content

Advertisement

Log in

A general storage model with applications to energy systems

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We consider a general storage system with applications to energy systems. Energy inflow, energy demand and costs interact with an environmental process. In each period, a limited amount of energy can be purchased from a supplementary source of energy at a cost per unit lower than a penalty cost for unmet demand. Sufficient conditions are found for the optimality of a zone-based release rule with critical numbers depending on the current state of the environment. There one buffer is needed to build up a storage level in the usual sense and a second one to protect against possible losses due to the variability in the randomly varying costs for unmet demand. The great versatility of our model is shown within the context of reservoir, hybrid energy and natural gas storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arunkumar S (1975) Characterization of optimal operating policies for finite dams. J Math Anal Appl 49:267–274

    Article  Google Scholar 

  • Arunkumar S (1977) Optimal regulation policies for a multipurpose reservoir with seasonal input and return function. J Optim Theory Appl 21:319–328

    Article  Google Scholar 

  • Bather JA (1962) Optimal regulation policies for finite dams. J Soc Ind Appl Math 10:395–423

    Article  Google Scholar 

  • Braga BPF Jr, Yeh W-G, Becker L, Barros TL (1991) Stochastic optimization of multiple-reservoir-system operation. J Water Resour Plann Manag 117:471–481

    Article  Google Scholar 

  • Castelletti A, Pianosi S, Soncini-Sessa R (2008) Water reservoir control under economic, social and environmental constraints. Automatica 44:1595–1607

    Article  Google Scholar 

  • Castelletti A, Galetti S, Restelli M, Soncini-Sessa R (2010) Tree-based reinforcement learning for optimal water reservoir operation. Water Resour Res 46:W09507

    Google Scholar 

  • Dietert JA, Pursell DA (2000) Underground natural gas storage. 5000 Bank of America, Houston, TX, 28 June 2000

  • Faddy MJ (1974a) Optimal control of finite dams: continuous output procedure. Adv Appl Prob 6:689–710

    Article  Google Scholar 

  • Faddy MJ (1974b) Optimal control of finite dams: discrete (2-stage) output procedure. J Appl Prob 11:111–121

    Article  Google Scholar 

  • Gessford J, Karlin S (1958) Optimal policy for hydroelectric operations. In: Arrow KJ, Karlin S, Scarf H (eds) Studies in the mathematical theory of inventory and production. Stanford University Press, Stanford, pp 179–200

    Google Scholar 

  • Grävenstein JH (2008) Die Optimalität strukturierter Entscheidungsfunktionen bei der Steuerung eines Reservoirs. Sierke Verlag, Göttingen

    Google Scholar 

  • Harrison JM, Resnik SI (1976) The stationary distribution and first exit probabilities of a storage process with general release rule. Math Oper Res 1:347–358

    Article  Google Scholar 

  • Haslett J (1976) The control of a multipurpose reservoir. Adv Appl Prob 8:592–609

    Article  Google Scholar 

  • Hejazi MI, Cai X (2011) Building more realistic reservoir optimization models using data mining—a case study of Shelbyville reservoir. Adv Water Resour 34:701–717

    Article  Google Scholar 

  • Helm W, Waldmann K-H (1984) Optimal control of arrivals to multiserver queues in a random environment. J Appl Prob 21:602–615

    Article  Google Scholar 

  • Heyman DP, Sobel MJ (1984) Stochastic models in operations research, vol II. McGraw-Hill, New York

    Google Scholar 

  • Hinderer K (1991) Increasing Lipschitz continuous maximizers of some dynamic programs. Ann Oper Res 29:565–586

    Article  Google Scholar 

  • Hinderer K, Waldmann K-H (2001) Cash management in a randomly varying environment. Eur J Oper Res 130:468–485

    Article  Google Scholar 

  • Hinderer K, Waldmann K-H (2005) Algorithms for countable state Markov decision models with an absorbing set. SIAM J Control Optim 43:2109–2131

    Article  Google Scholar 

  • Hossain MS, El-shafie A (2013) Intelligent systems in optimizing reservoir operation policy: a review. Water Resour Manag 27:3387–3470

    Article  Google Scholar 

  • Hull JC (1997) Options, futures, and other derivatives. Prentice-Hall, London

    Google Scholar 

  • Karamouz M, Vasiliadis HV (1992) Bayesian stochastic optimization of reservoir operation using uncertain forecasts. Water Resour Res 28:1221–1232

    Article  Google Scholar 

  • Kella O, Whitt W (1992) Useful martingales for stochastic storage processes with Lévy input. J Appl Prob 29:396–403

    Article  Google Scholar 

  • Kim JH, Powell WB (2011) Optimal energy commitments with storage and intermittent supply. Oper Res 59:1347–1360

    Article  Google Scholar 

  • Kim Y, Palmer RN (1997) Value of seasonal flow forecasts in Bayesian stochastic programming. J Water Resour Plann Manag 123:327–335

    Article  Google Scholar 

  • Labadie JW (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manag 130:93–111

    Article  Google Scholar 

  • Lai G, Margot F, Secomandi N (2010) An approximate dynamic programming approach to benchmark practice-based heuristics for natural gas storage valuation. Oper Res 58:564–582

    Article  Google Scholar 

  • Lai G, Wang M, Kekre S, Scheller-Wolf A, Secomandi N (2011) Valuation of storage at a liquefied natural gas terminal. Oper Res 59:602–616

    Article  Google Scholar 

  • Lamond BF (1991) Optimal admission policies for a finite queue with bursty arrivals. Ann Oper Res 28:243–260

    Article  Google Scholar 

  • Lamond BF (2003) Stochastic optimization of a hydroelectric reservoir using piecewise polynomial approximations. INFOR 41(1):51–69

    Google Scholar 

  • Lamond BF, Monroe SL, Sobel M (1995) A reservoir hydroelectric system: exactly and approximately optimal policies. Eur J Oper Res 81:535–542

    Article  Google Scholar 

  • Lamond BF, Boukhtouta A (2002) Water reservoir applications of Markov decision processes. In: Feinberg E, Schwartz A (eds) Handbook of Markov decision processes: methods and applications. Kluwer, Dordrecht, pp 537–558

    Chapter  Google Scholar 

  • Lamond BF, Boukhtouta A (2005) Neural approximation for the optimal control of a hydroplant with random inflows and concave revenues. ASCE J Energy Eng 131(1):72–95

    Article  Google Scholar 

  • Little JDC (1955) The use of storage water in a hydroelectric system. J Oper Res Soc Am 3:187–197

    Google Scholar 

  • Marano V, Rizzo G, Tiano FA (2012) Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage. Appl Energy 97:849–859

    Article  Google Scholar 

  • Massé P (1946) Les réserves et la régulation de l’avenir dans la vie économique. Hermann, Paris

    Google Scholar 

  • Mujumdar PP, Nirmala B (2007) A Bayesian stochastic optimization model for a multi-reservoir hydropower system. Water Resour Manag 21:1465–1485

    Article  Google Scholar 

  • Pye G (1966) A Markov model of the term structure. Q J Econ 53:413–435

    Google Scholar 

  • Rani D, Moreira MM (2010) Simulation-optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24:1107–1138

    Article  Google Scholar 

  • Rieder U (1975) Bayesian dynamic programming. Adv Appl Prob 7:330–348

    Article  Google Scholar 

  • Russell CB (1972) An optimal policy for operating a multipurpose reservoir. Oper Res 20:1181–1189

    Article  Google Scholar 

  • Secomandi N (2010) Optimal commodity trading with a capacitated storage asset. Manag Sci 56:449–467

    Article  Google Scholar 

  • Thompson M, Davison M, Rasmussen H (2009) Natural gas storage valuation and optimization: a real options application. Naval Res Logist 56:226–238

    Article  Google Scholar 

  • Turgeon A (2005) Solving a stochastic reservoir management problem with multilag autocorrelated inflows. Water Resour Res 41:W12414

    Article  Google Scholar 

  • van Hee KM (1978) Bayesian control of Markov chains, vol 95. Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam

  • Waldmann K-H (1984) Inventory control in randomly varying environments. SIAM J Appl Math 44:657–666

    Article  Google Scholar 

  • Wang QJ, Robertson DE, Chiew FHS (2009) A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45:W05407

    Google Scholar 

  • Wurbs RA (1991) Optimization of multi-purpose reservoir system operations: a review of modeling and analysis approaches. Technical report, Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis. http://www.dtic.mil/dtic/tr/fulltext/u2/a236080.pdf

  • Xi X, Sioshansi R, Marano V (2014) A stochastic dynamic programming model for co-optimization of ditributed energy storage. Energy Syst 5:475–505

    Article  Google Scholar 

  • Yakowitz S (1982) Dynamic programming applications in water resources. Water Resour Res 18:673–696

    Article  Google Scholar 

  • Yeh L, Hua LJ (1987) Optimal control of a finite dam: Wiener process input. J Appl Prob 24:186–199

    Article  Google Scholar 

  • Yeh W-G (1985) Reservoir management and operations models: a state-of-the-art review. Water Resour Res 21:1797–1818

    Article  Google Scholar 

  • Zhou Y, Scheller-Wolf A, Secomandi N, Smith S (2017) Managing wind-based electricity generation in the presence of storage and transmission capacity, SSRN papers

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Waldmann.

Appendix

Appendix

Lemma 11

Let \(v\in \mathfrak B_0\). Then, for all \(i\in I\),

  1. (i)

    Uv(si) is nonnegative and decreasing in s.

  2. (ii)

    Jv(sia) is convex in s for all a.

  3. (iii)

    There exists a minimizer \(f^*\in F\) of Uv (i.e., \(U_{f^*}v=Uv\)) fulfilling

    $$\begin{aligned} f^*(s,i)\le f^*(s+1,i)\le f^*(s,i)+1,\quad s\in S. \end{aligned}$$
  4. (iv)

    Uv(si) is convex in s.

Proof

  1. (i)

    Since c and v are nonnegative, also Uv is nonnegative. Let \(f\in F\) such that \(Uv=U_{f}v\). Fix \((s,i)\in S\times I\). Set \(a=f(s,i)\). Note that \(a\in D(s+1,i)\), too. Then, since v is decreasing in s, using \(T(s,a,x):=\min \{s-a+x,C\}\),

    $$\begin{aligned}&Uv(s+1,i)-Uv(s,i)\\&\quad \le Lv(s+1,i,a)-Lv(s,i,a)\\&\quad =\beta (i)\sum _{x=0}^\infty q_i(x)\int W_{i,x}(dj)\left[ v(T(s+1,a,x),j)-v(T(s,a,x),j)\right] \\&\quad \le 0, \end{aligned}$$

    which implies that Uv(si), \(i\in I\), is decreasing in s.

  2. (ii)

    By assumption, \(v(\cdot ,i)\), \(i\in I\), is convex and decreasing in s. Further, for all a and x, \(\min \{s-a+x,C\}\) is concave in s. By considering the three cases (a) \(s+2-a+x\le C\), (b) \(s+1-a+x=C\), (c) \(s-a+x\ge C\), the composition \(v(\min \{s-a+x,C\},j)\) is easily verified to be convex in s (where in the second case also use has to be made of the monotonicity of v). Finally, Jv(sia) is easily verified to be convex in s.

  3. (iii)

    We first show that \(f^*(s,i)\le f^*(s+1,i)\). Let \(a^*=f^*(s,i)\) and \(a\in D(s,i)\), \(a<a^*\). Then \(Lv(s,i,a)-Lv(s,i,a^*)\ge 0\). If \(a^*=\min \{0,d(i)-K(i)\}\), then \(f^*(s,i)\le f^*(s+1,i)\) holds trivially. Therefore let \(a^*>\min \{0,d(i)-K(i)\}\). Then, since c(ia) is independent of s and Jv(sia) is convex in s, we have

    $$\begin{aligned}&Lv(s+1,i,a)-Lv(s+1,i,a^*)\\&\quad =Lv(s,i,a)-Lv(s,i,a^*)+\Delta Jv(s,i,a)-\Delta Jv(s,i,a^*)\\&\quad \ge \sum _{\tilde{a}=a}^{a^*-1}[\Delta Jv(s,i,\tilde{a})-\Delta Jv(s,i,\tilde{a}+1)]\\&\quad =\sum _{\tilde{a}=a}^{a^*-1}[\Delta Jv(s+1,i,\tilde{a}+1)-\Delta Jv(s,i,\tilde{a}+1)]\\&\quad \ge 0. \end{aligned}$$

    Thus, \(f^*(s,i)\le f^*(s+1,i)\). We next show that \(f^*(s+1,i)\le f^*(s,i)+1\). Let \(a\in D(s,i)\), \(a>a^*\). Then \(Lv(s,i,a)-Lv(s,i,a^*)\ge 0\) by definition of \(a^*\). If \(a+1\not \in D(s+1,i)\), then the assertion follows immediately. Thus, let \(a+1\in D(s+1,i)\). Then also \(a^*+1\in D(s+1,i)\) and we obtain

    $$\begin{aligned}&Lv(s+1,i,a+1)-Lv(s+1,i,a^*+1)\\&\quad =c(i,a+1)-c(i,a^*+1)+ Jv(s+1,i,a+1)-Jv(s+1,i,a^*+1)\\&\quad =c(i,a+1)-c(i,a^*+1)+Jv(s,i,a)-Jv(s,i,a^*)\\&\quad =c(i,a+1)-c(i,a)-c(i,a^*+1)+c(i,a^*)+Lv(s,i,a)-Lv(s,i,a^*)\\&\quad \ge (c(i,a+1)-c(i,a))-(c(i,a^*+1)-c(i,a^*))\\&\quad \ge 0, \end{aligned}$$

    where the last inequality follows from the convexity of c(ia) in a. Hence, \(f^*(s+1,i)\le f^*(s,i)+1\).

  4. (iv)

    To prove convexity of \(Uv(\cdot ,i)\), using (ii) and (iii) we have to consider the following three cases (a)–(c).

    1. (a)

      \(f^*(s,i)=f^*(s+1,i)=f^*(s+2,i)\).

      $$\begin{aligned}&\Delta Uv(s+1,i)-\Delta Uv(s,i)=\Delta Jv(s+1,i,f^*(s,i))\\ {}&\quad -\Delta Jv(s,i,f^*(s,i))\ge 0. \end{aligned}$$
    2. (b)

      \(f^*(s,i)\le f^*(s+1,i)\le f^*(s+2,i)=f^*(s,i)+1\).

      $$\begin{aligned}&\Delta Uv(s+1,i)-\Delta Uv(s,i)\\&\quad \ge \Delta Lv(s+1,i,f^*(s,i)+1)-\Delta Lv(s,i,f^*(s,i))\\&\quad =\Delta Jv(s+1,i,f^*(s,i)+1)-\Delta Jv(s,i,f^*(s,i))\\&\quad =\Delta Jv(s,i,f^*(s,i))-\Delta Jv(s,i,f^*(s,i))\\&\quad =0. \end{aligned}$$
    3. (c)

      \(f^*(s,i)< f^*(s+1,i)<f^*(s+2,i)\). Set \(a^*=f^*(s,i)\). Then we have \(f^*(s+\varsigma ,i)= a^*+\varsigma \) and \(Jv(s+\varsigma ,i, f^*(s+\varsigma ,i))=Jv(s,i,a^*)\) for \(\varsigma \in \{1,2\}\) and, together with the convexity of c(ia) in a,

      $$\begin{aligned} \Delta Uv(s+1,i)-\Delta Uv(s,i)=c(i,a^*+2)-2c(i,a^*+1)+c(i,a^*) \ge 0, \end{aligned}$$

    which completes the proof. \(\square \)

Let \(i\in I\), \(v\in \mathfrak B_0\). Together with Lemma 11(ii) it follows that both \(a\rightarrow \rho (i) a+Jv(a,i,0)\) and \(a\rightarrow \ell (i) a+Jv(a,i,0)\) are convex in a and tend to infinity as \(a\rightarrow \infty \). Thus, there exists \(z(i)\in \mathbb N_0\), for which \(a\rightarrow \rho (i)a+Jv(a,i,0)\) becomes minimal on \(\mathbb N_0\). Further, there exists \(Z(i)\in \mathbb N_0\) for which \(a\rightarrow \ell (i)a+Jv(a,i,0)\) becomes minimal on \(\mathbb N_0\). Let \(a^*=Z(i)\). Then, by definition of \(a^*\) and \(\ell (i)\le \rho (i)\),

$$\begin{aligned} Jv(a^*,i,0)\le \ell (i)+Jv(a^*+1,i,0)\le \rho (i)+Jv(a^*+1,i,0), \end{aligned}$$

which implies \(z(i)\le Z(i)\).

Lemma 12

Let \(v\in \mathfrak B_0\). Then there exists \(f\in F\) such that \(Uv=U_fv\) with the following properties:

  1. (i)

    \(f(s,i)=s-\min \{s,z(i)\}\) for all \(0\le s\le d(i)-K(i)+z(i)\), where z(i) is the largest minimum point of the convex function \(a\rightarrow \rho (i) a+Jv(a,i,0)\) on \(\mathbb N_0\).

  2. (ii)

    Let \(\Delta v(s,i)\ge -\rho (i)\) for all \((s,i)\in S\times I\). If (\(A_\rho \)) is fulfilled, then \(\Delta Uv(s,i)\ge -\rho (i)\), \((s,i)\in S\times I\), and (i) holds with \(z(i)=0\) for all \(i\in I\).

Proof

Let \(i\in I\) and \(K(i)\le d(i)\). Set \(\tilde{s}:=z(i)\), \(d:=d(i)\), \(K:=K(i)\), and \(\rho :=\rho (i)\). By definition of \(\tilde{s}\),

$$\begin{aligned} \rho \tilde{s}+Jv(\tilde{s},i,0)-\rho (\tilde{s}+1) -Jv(\tilde{s}+1,i,0)=-(\rho +\Delta Jv(\tilde{s},i,0))<0. \end{aligned}$$

If \(\tilde{s}>0\), we additionally have

$$\begin{aligned} \rho \tilde{s}+Jv(\tilde{s},i,0)-\rho (\tilde{s}-1) -Jv(\tilde{s}-1,i,0)=\rho +\Delta Jv(\tilde{s}-1,i,0))\le 0. \end{aligned}$$

Next we show that \(\tilde{s}\) is the largest \(s\in S\), for which action \(a=0\) is optimal. The proof follows in two steps

  1. (1)

    For \(s=1,\ldots ,\tilde{s}\), using \(f(0,i)=0\) and Lemma 11(iii),

    $$\begin{aligned}&\rho (d-K)+Jv(s,i,0)-\rho (d-K-1)-Jv(s-1,i,0)\\&\quad =\rho +\Delta Jv(s-1,i,0))\le \rho +\Delta Jv(\tilde{s}-1,i,0)\le 0. \end{aligned}$$
  2. (2)

    For \(s=\tilde{s}+1,\ldots ,\tilde{s}+d-K\), using (1) and Lemma 11(iii),

    $$\begin{aligned}&\rho (d-K-(s-\tilde{s}))+Jv(s-(s-\tilde{s}),i,0)\\&\quad -\rho (d-K-(s-\tilde{s}-1))-Jv(s-(s-\tilde{s}-1)),i,0)\\&\quad = -(\rho +\Delta Jv(\tilde{s},i,0))<0 \end{aligned}$$

    The inequalities in step (2) additionally prove that \(f(s,i)=s-\tilde{s}\) for \(s=\tilde{s}+1,\ldots ,\tilde{s}+d-K\). Thus, (i) holds.

Let \(v\in \mathfrak B_0^\rho :=\{v\in \mathfrak B_0~|~\Delta v(s,i)\ge -\rho (i)\}\). Suppose \(v\in \mathfrak B_0^\rho \). To show \(Uv\in \mathfrak B_0^\rho \), fix \((s,i)\in S\times I\). If \(f(s+1,i)=s+1\), then

$$\begin{aligned} \Delta Uv(s,i)\ge Lv(s+1,i,s+1)-Lv(s,i,s)= c(i,s+1)-c(i,s)\ge - \rho (i). \end{aligned}$$

Otherwise, i.e., \(a:=f(s+1,i)<s+1\), we get, exploiting \(v\in \mathfrak B_0^\rho \),

$$\begin{aligned} \Delta Uv(s,i)\ge Lv(s+1,i,a)-Lv(s,i,a)=\Delta Jv(s,i,a)\ge -\rho (i), \end{aligned}$$

where the last inequality follows from \(v\in \mathfrak B_0^\rho \) and assumption (\(A_\rho \)). Thus, \(Uv\in \mathfrak B_0^\rho \) and, in particular,

$$\begin{aligned} Jv(0,i,0)-\rho (i)- Jv(1,i,0)= -\rho (i)-\Delta Jv(0,i,0)\le 0, \end{aligned}$$

which results in \(z(i)=0\) and completes the proof. \(\square \)

Lemma 13

Let \(v\in \mathfrak B_0\). For \(i\in I\), define z(i) as in Lemma 12 in case of \(K(i)\le d(i)\) and \(z(i)=0\) in case of \(K(i)>d(i)\). Then there exists a minimizer \(f\in F\) of Uv such that for all \(i\in I\)

  1. (i)

    \(f(s,i)=\max \{s-Z(i), d(i)-K(i)\}\),   \(d(i)-K(i)+z(i)<s\le d(i)\),

  2. (ii)

    \(f(s,i)=\min \{d(i),\max \{s-Z(i), d(i)-K(i)\}\}\),   \(s> d(i)\),

where Z(i) is the largest minimum point of the convex function \(a\rightarrow \ell (i) a+Jv(a,i,0)\) on \(\mathbb N_0\).

Proof

(i) Fix \(i\in I\). Set \(d:=d(i)\), \(K:=K(i)\), \(\ell :=\ell (i)\). First, let us consider \(s\le d-K+z(i)\), which is of relevance in case of \(d-K\ge 0\) only. By Lemma 12(i), \(f(s,i)=s-\min \{s,z(i)\}\). In particular, \(f(d-K+z(i),i)=d-K\). Now, let \(d-K+z(i)<s\le d\). Then, together with Lemma 11(iii), we already know that \(f(s,i)\ge d-K\). Thus,

$$\begin{aligned} Uv(s,i)=\min _{d-K\le a\le s}\{\ell \cdot (d-a)+Jv(s,i,a)\}. \end{aligned}$$
(7)

Note that \(Jv(s,i,a)=Jv(s-a,i,0)\). Thus, using \(a'=s-a\), (7) can be rewritten as

$$\begin{aligned} Uv(s,i)=\ell \cdot (d-s)+\min _{0\le a'\le s-d+K}\{\ell \cdot a'+Jv(a',i,0)\}. \end{aligned}$$
(8)

The minimum is achieved at \(\min \{Z(i),s-d+K\}\in \mathbb N_0\). By retransforming action a, (i) then follows. Finally, let \(s> d\). Then, similar to (i), we obtain together with \(a'=s-a\)

$$\begin{aligned} Uv(s,i)= & {} \min _{d-K\le a\le d}\{\ell \cdot (d-a)+Jv(s,i,a)\}\\= & {} \ell \cdot (d-s)+\min _{s-d\le a'\le s-d+K}\{\ell \cdot a'+Jv(a',i,0)\}. \end{aligned}$$

If \(Z(i)\in \{s-d,\ldots ,s-d+K\}\), it is admissible. Otherwise the minimum is taken on in one of the endpoints \(s-d\) and \(s-d+K\), respectively. By retransforming action a, we finally arrive at (ii). \(\square \)

Proof of Theorem 2

Let \(v_0=0\). Then \(\Delta v_1(s,i)=\min _{a\in D(s+1,i)}\{c(i,a)\}-\min _{a\in D(s,i)}\{c(i,a)\}\le 0=\Delta v_0(s,i)\). Now the proof follows by induction on n. First, for \(n=1\), (i) holds by assumption. To show (ii)–(iv), fix \((s,i)\in S\times I\). Let \(a>f_1(s,i)=:a^*\). Then, using (i),

$$\begin{aligned}&Lv_1(s,i,a)-Lv_1(s,i,a^*)\\&\quad =c(i,a)-c(i,a^*)+\sum _{a'=a^*+1}^{a}[Jv_1(s,i,a')-Jv_1(s+1,i,a')]\\&\quad \ge c(i,a)-c(i,a^*)+\sum _{a'=a^*+1}^{a}[Jv_0(s,i,a')-Jv_0(s+1,i,a')]\\&\quad \ge 0. \end{aligned}$$

Hence, \(f_2(s,i)\le f_1(s,i)\). If \(a^*:=z_1(i)>0\), then

$$\begin{aligned}&\rho (i)(a^*-1)+Jv_1(a^*-1,i,0)-\rho (i)a^*-Jv_1(a^*,i,0)\\&\quad =-\rho (i)-J\Delta v_1(a^*-1,i,0)\\&\quad \ge -\rho (i)-J\Delta v_0(a^*-1,i,0)\\&\quad \ge 0. \end{aligned}$$

Thus, \(z_2(i)\ge z_1(i)\). The inequality \(Z_2(i)\ge Z_1(i)\) follows analogously.

Next we prove (i) for \(n+1=2\), i.e., verify \(\Delta v_2(s,i)\le \Delta v_1(s,i)\). Using (ii) for \(n=1\) and Lemma 11(iii), we have to consider the following three cases:

  1. (a)

    \(f_{2}(s,i)=f_{1}(s+1,i)\).

    $$\begin{aligned} \Delta v_{2}(s,i)=\Delta Jv_1(s,i,f_1(s,i))\le \Delta Jv_{0}(s,i,f_1(s,i))=\Delta v_{1}(s,i). \end{aligned}$$
  2. (b)

    \(f_{2}(s,i)\le f_{1}(s,i)<f_{1}(s+1,i)\). Then we have \(f_{2}(s,i)+1\in D(s+1,i)\) and

    $$\begin{aligned}&\Delta v_{2}(s,i)\le c(i,f_{2}(s,i)+1)-c(i,f_{2}(s,i))\\&\quad \le c(i,f_{1}(s,i)+1)-c(i,f_{1}(s,i))\\&\quad =\Delta v_{1}(s,i). \end{aligned}$$
  3. (c)

    \(f_{2}(s,i)< f_{2}(s+1,i)\le f_{1}(s+1,i)\). Then we have \(f_{1}(s+1,i)-1\in D(s,i)\) and (i) follows in analogy to (b), using \(c(i,f_{2}(s+1,i))-c(i,f_{2}(s+1,i)-1)\le c(i,f_{1}(s+1,i))-c(i,f_{1}(s+1,i)-1)\).

Exactly the same arguments can be used to prove (i)–(iv) for an arbitrary \(n\in \mathbb N\). Finally, the comparison with \(\Delta V(s,i)\), \(f^*(s,i)\), \(z^*(i)\) and \(Z^*(i)\) follows by letting \(n\rightarrow \infty \). \(\square \)

Proof of Proposition 4

Fix \((s,i)\in S\times I\) such that \(a^*:=f^*(s,i)>\max \{a^+(i),d(i)\}\). Then we have \(LV(s,i,a^*)<LV(s,i,a^*-1)\) by assumption. Further, since \(c(i,a^*)=0\), we get

$$\begin{aligned}&LV(s+1,i,a^*+1)\\&\quad =(a^*+1-a^+(i))\varrho _a^+(i)+\tilde{c}_s(i,s+1)+JV(s+1,i,a^*+1)\\&\quad =\varrho _a^+(i)+\tilde{c}_s(i,s+1)-\tilde{c}_s(i,s)+LV(s,i,a^*)\\&\quad <\varrho _a^+(i)+\tilde{c}_s(i,s+1)-\tilde{c}_s(i,s)+LV(s,i,a^*-1)\\&\quad =\varrho _a^+(i)+(a^*-1-a^+(i))\varrho _a^ +(i)+\tilde{c}_s(i,s+1)+JV(s,i,a^*-1)\\&\quad =LV(s+1,i,a^*) \end{aligned}$$

and thus \(f^*(s+1,i)= a^*+1\), since \(f^*(s+1,i)\le f^*(s,i)+1\) by Theorem 3(ii). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lust, A., Waldmann, KH. A general storage model with applications to energy systems. OR Spectrum 41, 71–97 (2019). https://doi.org/10.1007/s00291-018-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-018-0527-1

Keywords

Navigation