Skip to main content
Log in

Golden ratio and phyllotaxis, a clear mathematical link

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Exploiting Markoff’s theory for rational approximations of real numbers, we explicitly link how hard it is to approximate a given number to an idealized notion of growth capacity for plants which we express as a modular invariant function depending on this number. Assuming that our growth capacity is biologically relevant, this allows us to explain in a satisfying mathematical way why the golden ratio occurs in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Photo: Richard Sniezko—US Forest Service.

  2. This is the same Markov as in the well-known Markov chains theory; who used this surname spelling in his French publications.

  3. Here, a number is considered to be equivalent to the golden ratio if its continued fraction expansion only contains 1 after a certain rank.

  4. See for instance Serre (1970), Theorem 2 of chapter VII.

References

  • Adler I (1974) A model of contact pressure in phyllotaxis. J Theor Biol 45:1–79

    Article  Google Scholar 

  • Aigner M (2013) Markov’s theorem and 100 years of the uniqueness conjecture, a mathematical journey from irrational numbers to perfect matchings. Springer, Berlin

    MATH  Google Scholar 

  • Atela P, Golé et C, Hotton S (2002) A dynamical system for plant pattern formation: a rigorous analysis. J Nonlinear Sci 12:641–676

    Article  MathSciNet  MATH  Google Scholar 

  • Bacher R (2014) On geodesics of phyllotaxis. Confluentes Math 6(1):3–27

    Article  MathSciNet  MATH  Google Scholar 

  • Couder Y, Douady S (1996a) Phyllotaxis as a dynamical self organizing process part I: the spiral modes resulting from time-periodic iterations. J Theor Biol 178:255–274

    Article  Google Scholar 

  • Couder Y, Douady S (1996b) Phyllotaxis as a dynamical self organizing process part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol 178:275–294

    Article  Google Scholar 

  • Couder Y, Douady S (1996c) Phyllotaxis as a dynamical self organizing process part III: the simulation of the transient regimes of ontogeny. J Theor Biol 178:295–312

    Article  Google Scholar 

  • Coxeter HSM (1972) The role of intermediate convergents in Tait’s explanation for phyllotaxis. J Algebra 20:167–175

    Article  MathSciNet  MATH  Google Scholar 

  • Douady S (1998) The selection of phyllotactic patterns. In: Jean RV, Barabe D (eds) Symmetry in plants. World Scientific, Singapore, pp 335–358

    Chapter  Google Scholar 

  • Hermite C (1916) Sur l’introduction des variables continues dans la théorie des nombres. J Reine Angew Math 41:191–216

    MathSciNet  Google Scholar 

  • Humbert G (1916) Sur la méthode d’approximation d’Hermite. J Math Pures App 7ème série 2:79–103

    MATH  Google Scholar 

  • van Iterson G (1907) Mathematische und mikroskopisch-anatomische Studien über Blattstellungen, nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer in Jena

  • Jacobs B (2014) On Hermite’s algorithm. Bachelor’s thesis, Utrecht University

  • Jean RV, Barabé D (1998) Symmetry in plants. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Leigh EG Jr (1983) The golden section and spiral leaf-arrangement. Trans Conn Acad Arts Sci 44:163–176

    Google Scholar 

  • Markoff AA (1879) Sur les formes quadratiques binaires indéfinies. Math Ann 15:381–496

    Article  MATH  Google Scholar 

  • Markoff AA (1880) Sur les formes quadratiques binaires indéfinies (second mémoire). Math Ann 17:379–399

    Article  MathSciNet  MATH  Google Scholar 

  • Marzec C, Kappraff J (1983) Properties of maximal spacing on a circle related to phyllotaxis and to the golden mean. J Theor Biol 103:201–226

    Article  MathSciNet  Google Scholar 

  • Okabe T (2012a) Systematic variations in divergence angle. J Theor Biol 313:20–41. arXiv:1212.3377

  • Okabe T (2012b) Geometric interpretation of phyllotaxis transition. arXiv:1212.3112

  • Refahi Y, Brunoud G, Farcot E, Jean-Marie A, Pulkkinen M, Vernoux T, Godin C (2016) A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. eLIFE. https://doi.org/10.7554/eLife.14093

  • Reutenauer C (2018) From Christoffel words to Markoff numbers. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Ridley JN (1986) Ideal phyllotaxis on general surfaces of revolution. Math Biosci 79(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Serre J-P (1970) Cours d’arithmétique. Presses universitaires de France, Paris

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Stéphane Durand and Christiane Rousseau for drawing our attention to the notion that: “it is because it is hard to approximate by rational numbers that the golden ratio plays a key role in phyllotaxis”. Our objective in this work was to give a precise mathematical meaning to this statement. We also thank Nadia Lafrenière and Caroline Series for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bergeron.

Additional information

This work was supported by grants from NSERC.

Appendix

Appendix

We calculate here the limit of the averaging integral (7) in the case of the golden ratio \(x=\varphi \), whose Hermite’s convergents are the quotients \(F_{n+1}/F_{n}\). The required calculation is greatly simplified using the simplified expression

$$\begin{aligned} f_\varphi ^{(n)}(t)=\varphi ^{-2\,(n+1)}t+F_n^2\,t. \end{aligned}$$
(8)

for the function \(f_\varphi ^{(n)}\), which follows from the fact that \((F_{n}-F_{n+1}\,\varphi )^2=\varphi ^{-2\,(n+1)}\). The corresponding minimum occurs at \(F_n\,\varphi ^{n+1}\), and takes the value

$$\begin{aligned} 2F_n/\varphi ^{n+1}\approx 2/\sqrt{5}. \end{aligned}$$

These assertions follows from the well known Binet formula

$$\begin{aligned} F_n=\frac{\varphi ^{n+1}-(-1/\varphi )^{n+1}}{\sqrt{5}}. \end{aligned}$$

Exploiting that, \(0\le \left| {(-1/\varphi )^{n+1}}\right| \ll 1\), we also deduce from it the very good approximation \(F_n\approx {\varphi ^{n+1}}/{\sqrt{5}}\). Thus \( f_\varphi ^{(n)}(t)\) is very well approximated by \(\varphi ^{-2\,(n+1)}\,t+{\varphi ^{2\,(n+1)}}/{(5\,t)}\) when n is large enough. We may also calculate that

$$\begin{aligned} t_n(\varphi )= & {} \sqrt{\frac{F_n^2-F_{n-1}^2}{\varphi ^{-2\,n}-\varphi ^{-2\,(n+1)}}} \\= & {} \varphi ^{n}\,F_{n-1}\,\sqrt{((F_n/F_{n-1})^2-1)\,\varphi }\\\approx & {} \varphi ^{n+1}F_{n-1}\approx \varphi ^{2\,(n+1)}/\sqrt{5}, \end{aligned}$$

from which we get

$$\begin{aligned} \frac{t_{n+1}^2-t_n^2}{t_{n+1}-t_{n}}=t_{n+1}+t_{n}\approx \varphi ^{n+1}(\varphi \,F_{n}+F_{n-1})= \varphi ^{2\,(n+1)}, \end{aligned}$$

as well as

$$\begin{aligned} \frac{\log (t_{n+1}/t_n)}{t_{n+1}-t_{n}}\approx \sqrt{5}\,\frac{\log (\varphi ^{2\,n+3}/\varphi ^{2\,n+1})}{\varphi ^{2\,n+3}-\varphi ^{2\,n+1}}=2\,\sqrt{5}\,\frac{ \log (\varphi )}{\varphi ^{2\,(n+1)}} \end{aligned}$$

Hence, applying formula (7), we find that

$$\begin{aligned} g_\varphi= & {} \limsup _{n\rightarrow \infty }\frac{1}{t_{n+1}-t_{n}}\int _{t_{n}}^{t_{n+1}} f_\varphi ^{(n)}(t)\, dt \\= & {} \limsup _{n\rightarrow \infty } \frac{1}{t_{n+1}-t_{n}}\left[ \varphi ^{-2\,(n+1)}\,\frac{t^2}{2} + \frac{\varphi ^{2\,(n+1)}}{5}\log (t) \right] _{t=t_{n}}^{t=t_{n+1}} \\= & {} \limsup _{n\rightarrow \infty } \frac{\varphi ^{-2\,(n+1)}}{2}\,\left( \frac{t_{n+1}^2-t_n^2}{t_{n+1}-t_{n}}\right) + \frac{\varphi ^{2\,(n+1)}}{5}\left( \frac{\log (t_{n+1}/t_n)}{t_{n+1}-t_{n}} \right) \\= & {} \frac{1}{2} +\frac{2}{\sqrt{5}}\log (\varphi ). \end{aligned}$$

In the case of \(\psi :=1+\sqrt{2}\), one replaces Fibonacci numbers by Pell numbers, \(P_n\), and uses

$$\begin{aligned} f_\psi ^{(n)}(t)= {P_n}/{t} +\psi ^{-2\,n}\,t,\qquad P_n\approx {\varphi ^n}/{\sqrt{8}},\qquad \mathrm{and}\qquad t_n\approx {\psi ^{2\,n+1}}/{\sqrt{8}}, \end{aligned}$$

to show that \(g_\psi ={1}/{2} +\log (\psi )/{\sqrt{8}}\) with a very similar calculation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, F., Reutenauer, C. Golden ratio and phyllotaxis, a clear mathematical link. J. Math. Biol. 78, 1–19 (2019). https://doi.org/10.1007/s00285-018-1265-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1265-3

Keywords

Mathematics Subject Classification

Navigation