Skip to main content
Log in

Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe2+ oxidation and generate Fe3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c4-type cytochrome c552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe2+ oxidation mechanism in Fe2+-oxidizing A. ferrooxidans ssp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(The electron transfer chains consisted with the metalloproteins encoded by rus and pet I operon were adapted from the previous studies [6, 29])

Similar content being viewed by others

References

  1. Abergel C, Nitschke W, Malarte G, Bruschi M, Claverie JM, Giudici-Orticoni MT (2003) The structure of Acidithiobacillus ferrooxidans c 4-cytochrome: a model for complex-induced electron transfer tuning. Structure 11:547–555. https://doi.org/10.1016/S0969-2126(03)00072-8

    Article  PubMed  CAS  Google Scholar 

  2. Ai C, McCarthy S, Liang Y, Rudrappa D, Qiu G, Blum P (2017) Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-017-1973-5

    Article  PubMed  Google Scholar 

  3. Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB (2010) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122. https://doi.org/10.1099/mic.0.044537-0

    Article  PubMed  CAS  Google Scholar 

  4. Appia-Ayme C, Bengrine A, Cavazza C, Giudici-Orticoni MT, Bruschi M, Chippaux M, Bonnefoy V (1998) Characterization and expression of the co-transcribed cyc1 and cyc2 genes encoding the cytochrome c4 (c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020. FEMS Microbiol Lett 167:171–177

    PubMed  CAS  Google Scholar 

  5. Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97:7543–7552. https://doi.org/10.1007/s00253-013-5095-3

    Article  PubMed  CAS  Google Scholar 

  6. Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT (2008) A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 283:25803–25811. https://doi.org/10.1074/jbc.M802496200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Castelle C, Ilbert M, Infossi P, Leroy G, Giudici-Orticoni MT (2010) An unconventional copper protein required for cytochrome c oxidase respiratory function under extreme acidic conditions. J Biol Chem 285:21519–21525. https://doi.org/10.1074/jbc.M110.131359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Castelle CJ, Roger M, Bauzan M, Brugna M, Lignon S, Nimtz M, Golyshina OV, Giudici-Orticoni M-T, Guiral M (2015) The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: a membrane-bound complex oxidizing ferrous iron. Biochim Biophys Acta 1847:717–728. https://doi.org/10.1016/j.bbabio.2015.04.006

    Article  PubMed  CAS  Google Scholar 

  9. Hall JF, Kanbi LD, Harvey I, Murphy LM, Hasnain SS (1998) Modulating the redox potential and acid stability of rusticyanin by site-directed mutagenesis of Ser86. Biochemistry 37:11451–11458

    Article  PubMed  CAS  Google Scholar 

  10. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  11. Hedrich S, Johnson DB (2013) Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. Int J Syst Evol Microbiol 63:4018–4025. https://doi.org/10.1099/ijs.0.049759-0

    Article  PubMed  CAS  Google Scholar 

  12. Hippe H (2000) Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50:501–503

    Article  PubMed  Google Scholar 

  13. Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  14. Kai M, Yano T, Fukomori Y, Yamanaka T (1989) Cytochrome oxidase of an acidophilic iron-oxidizing bacterium, Thiobacillus ferrooxidans, functions at pH 3.5. Biochem Biophys Res Commun 160:839–843

    Article  PubMed  CAS  Google Scholar 

  15. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015-05310.1038/nprot.2015.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Klink C, Heim J, Daus B, Eisen S, Schlömann M, Schopf S (2015) Bioreactor process optimization for bioleaching of fine-grained residues from copper smelting. Adv Mater Res 1130:321–324. https://doi.org/10.4028/www.scientific.net/AMR.1130.321

    Article  Google Scholar 

  17. Koebnik R, Locher KP, Gelder PV (2000) Structure and function of bacterial outer membrane. Mol Microbiol 37:239–253

    Article  PubMed  CAS  Google Scholar 

  18. Kozubal MA, Dlakic M, Macur RE, Inskeep WP (2011) Terminal oxidase diversity and function in “Metallosphaera yellowstonensis”: gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the Sulfolobales. Appl Environ Microbiol 77:1844–1853. https://doi.org/10.1128/aem.01646-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Krogh A, Larsson B, Heijne GV, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  20. Li T-F, Painter RG, Ban B, Blake RC (2015) The multicenter aerobic iron respiratory chain of Acidithiobacillus ferrooxidans functions as an ensemble with a single macroscopic rate constant. J Biol Chem 290:18293–18303. https://doi.org/10.1074/jbc.M115.657551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liljeqvist M, Valdes J, Holmes DS, Dopson M (2011) Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3. J Bacteriol 193:4304–4305. https://doi.org/10.1128/jb.05373-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Malarte G, Leroy G, Lojou E, Abergel C, Bruschi M, Giudici-Orticoni MT (2005) Insight into molecular stability and physiological properties of the diheme cytochrome CYC41. Biochemistry 44:6471–6481

    Article  PubMed  CAS  Google Scholar 

  23. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  24. Nieto PA, Covarrubias PC, Jedlicki E, Holmes DS, Quatrini R (2009) Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol Biol 10:63. https://doi.org/10.1186/1471-2199-10-63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Orellana LH, Jerez CA (2011) A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage. Appl Microbiol Biotechnol 92:761–767. https://doi.org/10.1007/s00253-011-3494-x

    Article  PubMed  CAS  Google Scholar 

  26. Petersen TN, Brunak S, Heijne GV, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  28. Ponce JS, Moinier D, Byrne D, Amouric A, Bonnefoy V (2012) Acidithiobacillus ferrooxidans oxidizes ferrous iron before sulfur likely through transcriptional regulation by the global redox responding RegBA signal transducing system. Hydrometallurgy 127–128:187–194. https://doi.org/10.1016/j.hydromet.2012.07.016

    Article  CAS  Google Scholar 

  29. Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394. https://doi.org/10.1186/1471-2164-10-394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Roger M, Biaso F, Castelle CJ, Bauzan M, Chaspoul F, Lojou E, Sciara G, Caffarri S, Giudici-Orticoni M-T, Ilbert M (2014) Spectroscopic characterization of a green copper site in a single-domain cupredoxin. PLoS ONE 9:e98941. https://doi.org/10.1371/journal.pone.0098941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Salemme FR (1977) Structure and function of cytochromes. Ann Rev Biochem 46:299–329

    Article  PubMed  CAS  Google Scholar 

  32. Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56. https://doi.org/10.1016/j.resmic.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  33. Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  34. Talla E, Hedrich S, Mangenot S, Ji B, Johnson DB, Barbe V, Bonnefoy V (2014) Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27. Res Microbiol 165:753–760. https://doi.org/10.1016/j.resmic.2014.08.002

    Article  PubMed  CAS  Google Scholar 

  35. Tamura K, Peterson D, Peterson D, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59:177–185

    Article  CAS  Google Scholar 

  37. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108. https://doi.org/10.1016/j.hydromet.2006.05.001

    Article  CAS  Google Scholar 

  38. Wu C, Zeng W, Zhou H, Fu B, Huang J, Qiu G, Wang D (2007) Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms. J Cent South Univ Technol 4:474–478. https://doi.org/10.1007/s11771?007?0092?2

    Article  Google Scholar 

  39. Yan L, Zhang S, Wang W, Hu H, Wang Y, Yu G, Chen P (2015) Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1. Genomics Data 6:269–270. https://doi.org/10.1016/j.gdata.2015.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123. https://doi.org/10.1099/mic.0.26966-0

    Article  PubMed  CAS  Google Scholar 

  41. Yarzabal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002) The high-molecular-weight cytochrome c cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317. https://doi.org/10.1128/jb.184.1.313-317.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31470230, 51320105006, 51604308) and the Natural Science Foundation of Hunan Province (2015JJ2165).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Zeng or Guanzhou Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2005 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, C., Liang, Y., Miao, B. et al. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile. Curr Microbiol 75, 818–826 (2018). https://doi.org/10.1007/s00284-018-1453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1453-9

Navigation