Skip to main content

Advertisement

Log in

Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite–lithiophilite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76–80 GPa in a natural triphylite–lithiophilite sample with chemical composition M1LiM2Fe2+0.708Mn0.292PO4 (theoretical composition M1LiM2Fe2+0.5Mn0.5PO4). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents ν1 (~ 9330 cm−1) and ν2 (~ 7110 cm−1), resulting from the electronic spin-allowed transition 5T2g → 5Eg of octahedral HSM2Fe2+. Both ν1 and ν2 bands shift non-linearly with pressure to higher energies up to ~ 55 GPa. In the optical absorption spectrum measured at ~ 81 GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360 cm−1 appears, superimposed on the tail of the high-energy ligand-to-metal O2− → Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition 1A1g → 1T1g of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P–O symmetric stretching modes to lower frequencies at ~ 76 GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of M2Mn2+ simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite M2Fe2+ end-member, in qualitative agreement with our experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Similar to the bulk modulus K0 parameter, the octahedral modulus is a quantity inversely proportional to the polyhedral compressibility. The mean linear polyhedral compressibility is βl = 1/R0RP), where R0 represents the ambient-pressure (mean) central atom–ligand distance within the respective polyhedron and ΔRP is its pressure-induced change. Consequently, the polyhedral modulus can be defined as Kpoly = 1/3 βl (Hazen and Finger 1982).

  2. The Mn2+ cations in Pbnm-M1LiM2(Fe0.5Mn0.5)[PO4] remained in an HS configuration, as their LS state could not be freely stabilized in the pressure range considered; attempts to rigidly fix Mn2+ in a LS state led to much higher ground state energies, as in LiMnPO4 at zero pressure (Zhou et al. 2004).

References

  • Badro J (2014) Spin transitions in mantle minerals. Annu Rev Earth Planet Sci 42:231–248. https://doi.org/10.1146/annurev-earth-042711-105304

    Article  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cerantola V, McCammon C, Kupenko I et al (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. Am Miner 100:2670–2681

    Article  Google Scholar 

  • Fehr KT, Hochleitner R, Schmidbauer E, Schneider J (2007) Mineralogy, Mössbauer spectra and electrical conductivity of triphylite Li(Fe2+,Mn2+)PO4. Phys Chem Miner 34:485–494

    Article  Google Scholar 

  • Fransolet A-M, Antenucci D, Speetjens J-M, Tarte P (1984) An X-ray determinative method for the divalent cation ratio in the triphylite–lithiophilite series. Miner Mag 48:373–381

    Article  Google Scholar 

  • Frost RL, Xi Y, Scholz R et al (2013) Raman and infrared spectroscopic characterization of the phosphate mineral lithiophilite—LiMnPO4. Phosphorus Sulfur Silicon Relat Elem 188:1526–1534

    Article  Google Scholar 

  • Geller S, Durand J-L (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325–331

    Article  Google Scholar 

  • Goncharov AF, Struzhkin VV, Jacobsen SD (2006) Reduced radiative conductivity of low-spin (Mg, Fe)O in the lower mantle. Science 312:1205–1208. https://doi.org/10.1126/science.1125622

    Article  Google Scholar 

  • Goncharov AF, Haugen BD, Struzhkin VV et al (2008) Radiative conductivity in the Earth’s lower mantle. Nature 456:231–234

    Article  Google Scholar 

  • Goncharov AF, Beck P, Struzhkin VV et al (2009) Thermal conductivity of lower-mantle minerals. Phys Earth Planet Inter 174:24–32

    Article  Google Scholar 

  • Gossner B, Strunz H (1932) Über strukturelle Beziehungen zwischen Phosphaten (Triphyline) und Silikaten (Olivin) und über die chemische Zusammensetzung von Ardennit. Z Krist 83:415–421

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry. Wiley, New York

    Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  • Keppler H, Smyth JR (2005) Optical and near infrared spectra of ringwoodite to 21.5 GPa: implications for radiative heat transport in the mantle. Am Miner 90:1209–1212

    Article  Google Scholar 

  • Keppler H, McCammon CA, Rubie DC (1994) Crystal-field and charge-transfer spectra of (Mg, Fe)SiO3 perovskite. Am Miner 79:1215–1218

    Google Scholar 

  • Keppler H, Kantor I, Dubrovinsky LS (2007) Optical absorption spectra of ferropericlase to 84 GPa. Am Miner 92:433–436

    Article  Google Scholar 

  • Klotz S, Chervin J-C, Munsch P, Marchand G Le (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:75413

    Article  Google Scholar 

  • Kohn W, Sham LJ (1964) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens matter 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  • Langer K, Taran MN, Fransolet A-M (2006) Electronic absorption spectra of phosphate minerals with olivine-type structures: I. Members of the triphylite–lithiophilite series, M1[6]LiM2[6](Fex 2+Mn1 – x 2+)[PO4]. Eur J Miner 18:337–344

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT et al (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett 36:2–5. https://doi.org/10.1029/2009GL039652

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT et al (2010a) Effect of dilution on the spin pairing transition in rhombohedral carbonates. High Press Res 30:224–229

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT et al (2010b) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:64110

    Article  Google Scholar 

  • Li Z, Shinno I (1997) Next neighbor effects in triphylite and related phosphate minerals. Miner J 19:99–107

    Article  Google Scholar 

  • Lin J-F, Vanko G, Jacobsen SD et al (2007) Spin transition zone in Earth’s lower mantle. Science 317:1740–1743. https://doi.org/10.1126/science.1144997

    Article  Google Scholar 

  • Lin J, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275. https://doi.org/10.1002/rog.20010.1.INTRODUCTION

    Article  Google Scholar 

  • Lobanov SS, Goncharov AF, Litasov KD (2015) Optical properties of siderite (FeCO3) across the spin transition: crossover to iron-rich carbonates in the lower mantle. Am Miner 100:1059–1064

    Article  Google Scholar 

  • Lobanov SS, Holtgrewe N, Goncharov AF (2016) Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature. Earth Planet Sci Lett 449:20–25

    Article  Google Scholar 

  • McCammon C, Glazyrin K, Kantor A et al (2013) Iron spin state in silicate perovskite at conditions of the Earth’s deep interior. High Press Res 33:663–672

    Article  Google Scholar 

  • Ming X, Wang X-L, Du F et al (2012) First-principles study of pressure-induced magnetic transition in siderite FeCO3. J Alloy Comp 510:L1–L4

    Article  Google Scholar 

  • Momma K, Izumi F (2008) VESTA: a three dimensional visualization system for electronic and structural analysis. J Appl Cryst 41:653–658

    Article  Google Scholar 

  • Mrosko M, Koch-Müller M, Schade U (2011) In-situ mid/far micro-FTIR spectroscopy to trace pressure-induced phase transitions in strontium feldspar and wadsleyite. Am Miner 96:1748–1759

    Article  Google Scholar 

  • Müller J, Speziale S, Efthimiopoulos I et al (2016) Raman spectroscopy of siderite at high pressure: evidence for a sharp spin transition. Am Miner 101:2638–2644. https://doi.org/10.2138/am-2016-5708

    Article  Google Scholar 

  • Müller J, Efthimiopoulos I, Jahn SA, Koch-Müller M (2017) Effect of temperature on the pressure-induced spin transition in siderite and iron-bearing magnesite: a Raman spectroscopy study. Eur J Miner 29:785. https://doi.org/10.1127/ejm/2017/0029-2645

    Article  Google Scholar 

  • Núñez Valdez MN, Efthimiopoulos I, Taran M et al (2018) Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite. Phys Rev B 97:184405

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Raju AR, Reddy KM, Reddy BJ (1983) Optical and EPR measurements on triphylite. Proc Indian Natl Sci Acad 49A:662–668

    Google Scholar 

  • Santamaria-Perez D, Thomson A, Segura A et al (2016) Metastable structural transformations and pressure-induced amorphization in natural (Mg, Fe)2SiO4 olivine under static compression: a Raman spectroscopic study. Amer Miner 101:1642–1650

    Article  Google Scholar 

  • Shankland TJ, Duba AJ, Woronow A (1974) Pressure shifts of optical absorption bands in iron-bearing garnet, spinel, olivine, pyroxene, and periclase. J Geophys Res 79:3273–3282

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925

    Article  Google Scholar 

  • Shinno I (1981) A Mössbauer study of ferric iron in olivine. Phys Chem Miner 7:91–95

    Article  Google Scholar 

  • Solomatova NV, Jackson JM, Sturhahn W et al (2016) Equation of state and spin crossover of (Mg, Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary. Am Miner 101:1084–1093

    Article  Google Scholar 

  • Speziale S, Milner a, Lee VE et al (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci USA 102:17918–17922. https://doi.org/10.1073/pnas.0508919102

    Article  Google Scholar 

  • Syassen K (2008) Ruby under pressure. High Press Res 28:75–126

    Article  Google Scholar 

  • Takemura K (2001) Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. J Appl Phys 89:662–668

    Article  Google Scholar 

  • Taran MN, Koch-Müller M (2006) Octahedral cation ordering in Mg, Fe2+-olivine. An optical absorption spectroscopic study. Phys Chem Miner 33:511–518

    Article  Google Scholar 

  • Taran MN, Matsyuk SS (2013) Fe2+, Mg-distribution among non-equivalent structural sites M1 and M2 in mantle olivines: an optical spectroscopy study. Phys Chem Miner 40:309–318

    Article  Google Scholar 

  • Taran MN, Ohashi H, Koch-Muller M (2008) Optical spectroscopic study of synthetic NaScSi2O6–CaNiSi2O6 pyroxenes at normal and high pressures. Phys Chem Miner 35:117–127

    Article  Google Scholar 

  • Taran MN, Müller J, Friedrich A, Koch-Müller M (2017a) High-pressure optical spectroscopy study of natural siderite. Phys Chem Miner 44:537–546

    Article  Google Scholar 

  • Taran MN, Müller J, Friedrich A, Koch-Müller M (2017b) High-pressure transition of Fe2+ from low- to high-spin electronic state in siderite: optical absorption study. Miner J 39:3–23

    Google Scholar 

  • Thompson RM, Downs RT (2001) Quantifying distortion from ideal closest-packing in a crystal structure with analysis and application. Acta Crystallogr B 57:119–127

    Article  Google Scholar 

  • Tsuchiya T, Wentzcovitch RM, da Silva CRS, de Gironcoli S (2006) Spin transition in magnesiowüstite in Earth’s lower mantle. Phys Rev Lett 96:198501. https://doi.org/10.1103/PhysRevLett.96.198501

    Article  Google Scholar 

  • Umemoto K, Wentzcovitch RMM, Yu YG, Requist R (2008) Spin transition in (Mg, Fe)SiO3 perovskite under pressure. Earth Planet Sci Lett 276:198–206

    Article  Google Scholar 

  • Weis C, Sternemann C, Cerantola V et al (2017) Pressure driven spin transition in siderite and magnesiosiderite single crystals. Sci Rep 7:16526

    Article  Google Scholar 

  • Williams Q, Knittle E, Reichlin R et al (1990) Structural and electronic properties of Fe2SiO4-fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res 95:21549–21563

    Article  Google Scholar 

  • Zhou F, Cococcioni M, Marianetti CA et al (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70:235121

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Christian Schmidt at GFZ for the photos. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Funds Ko1260/18 and Wi2000/10. MNV gratefully acknowledges the computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JURECA at Jülich Supercomputing Center (JSC) under Project ID hpo24. Some computations were also performed at the GFZ Linux cluster GLIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Efthimiopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taran, M.N., Núñez Valdez, M., Efthimiopoulos, I. et al. Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite–lithiophilite. Phys Chem Minerals 46, 245–258 (2019). https://doi.org/10.1007/s00269-018-1001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-1001-y

Keywords

Navigation