Skip to main content

Advertisement

Log in

Staging and following common pediatric malignancies: MRI versus CT versus functional imaging

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Most pediatric malignancies require some form of cross-sectional imaging, either for staging or response assessment. The majority of these are solid tumors and this review addresses the role of MRI, as well as other cross-sectional and functional imaging techniques, for evaluating the most common pediatric solid tumors. The primary emphasis is on neuroblastoma, hepatoblastoma and Wilms tumor, three of the most common non-central-nervous-system (CNS) pediatric solid tumors encountered in young children. The initial focus will be a review of the imaging techniques and approaches used for diagnosis, staging and early post-treatment response assessment, followed by a discussion of the role surveillance imaging plays in pediatric oncology and a brief review of other emerging imaging techniques. The lessons learned here can be applied to most other pediatric tumors, including rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, as well as germ cell tumors, neurofibromatosis and other rare tumors. Although lymphoma, in particular Hodgkin lymphoma, represents one of the more common pediatric malignancies, this is not discussed in detail here. Rather, many of the lessons that we have learned from lymphoma, specifically with regard to how we integrate both anatomical imaging and functional imaging techniques, is applied to the discussion of the other pediatric solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Irwin MS, Park JR (2015) Neuroblastoma: paradigm for precision medicine. Pediatr Clin N Am 62:225–256

    Article  Google Scholar 

  2. Brodeur GM, Pritchard J, Berthold F et al (1993) Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11:1466–1477

    Article  PubMed  CAS  Google Scholar 

  3. Brisse HJ, McCarville MB, Granata C et al (2011) Guidelines for imaging and staging of neuroblastic tumors: consensus report from the international neuroblastoma risk group project. Radiology 261:243–257

    Article  PubMed  Google Scholar 

  4. Monclair T, Brodeur GM, Ambros PF et al (2009) The international neuroblastoma risk group (INRG) staging system: an INRG task force report. J Clin Oncol 27:298–303

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cohn SL, Pearson AD, London WB et al (2009) The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol 27:289–297

    Article  PubMed  PubMed Central  Google Scholar 

  6. Callahan MJ, MacDougall RD, Bixby SD et al (2018) Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol 48:21–30

    Article  PubMed  Google Scholar 

  7. Dumba M, Jawad N, McHugh K (2015) Neuroblastoma and nephroblastoma: a radiological review. Cancer Imaging 15:5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharp SE, Trout AT, Weiss BD et al (2016) MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics 36:258–278

    Article  PubMed  Google Scholar 

  9. DuBois SG, Mody R, Naranjo A et al (2017) MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 64. https://doi.org/10.1002/pbc.26545

  10. Nadel HR (2014) SPECT/CT in pediatric patient management. Eur J Nucl Med Molec Imaging 41:S104–S114

    Article  Google Scholar 

  11. Gauguet JM, Pace-Emerson T, Grant FD et al (2017) Evaluation of the utility of (99m) Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma. Pediatr Blood Cancer 64. https://doi.org/10.1002/pbc.26601

  12. Papathanasiou ND, Gaze MN, Sullivan K et al (2011) 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 52:519–525

    Article  PubMed  CAS  Google Scholar 

  13. Sharp SE, Shulkin BL, Gelfand MJ et al (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  14. Park JR, Bagatell R, Cohn SL et al (2017) Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute clinical trials planning meeting. J Clin Oncol 35:2580–2587

    Article  PubMed  PubMed Central  Google Scholar 

  15. Trout AT, Towbin AJ, Klingbeil L et al (2017) Single and multidimensional measurements underestimate neuroblastoma response to therapy. Pediatr Blood Cancer 64:18–24

    Article  PubMed  Google Scholar 

  16. Bagatell R, McHugh K, Naranjo A et al (2016) Assessment of primary site response in children with high-risk neuroblastoma: an international multicenter study. J Clin Oncol 34:740–746

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmidt M, Simon T, Hero B et al (2008) The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German neuroblastoma trial NB97. Eur J Cancer 44:1552–1558

    Article  PubMed  Google Scholar 

  18. Decarolis B, Schneider C, Hero B et al (2013) Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the cologne interscore comparison study. J Clin Oncol 31:944–951

    Article  PubMed  CAS  Google Scholar 

  19. Ladenstein R, Lambert B, Potschger U et al (2018) Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Molec Imaging 45:292–305

    Article  Google Scholar 

  20. Yanik GA, Parisi MT, Shulkin BL et al (2013) Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. J Nucl Med 54:541–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fischer J, Pohl A, Volland R et al (2017) Complete surgical resection improves outcome in INRG high-risk patients with localized neuroblastoma older than 18 months. BMC Cancer 17:520.

    Article  PubMed  PubMed Central  Google Scholar 

  22. von Allmen D, Davidoff AM, London WB et al (2017) Impact of extent of resection on local control and survival in patients from the COG A3973 study with high-risk neuroblastoma. J Clin Oncol 35:208–216

    Article  Google Scholar 

  23. Roebuck DJ, Aronson D, Clapuyt P et al (2007) 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. Pediatr Radiol 37:123–132

    Article  PubMed  Google Scholar 

  24. Shelmerdine SC, Roebuck DJ, Towbin AJ et al (2016) MRI of paediatric liver tumours: how we review and report. Cancer Imaging 16:21

    Article  PubMed  PubMed Central  Google Scholar 

  25. Emre S, Umman V, Rodriguez-Davalos M (2012) Current concepts in pediatric liver tumors. Pediatr Transplant 16:549–563

    Article  PubMed  CAS  Google Scholar 

  26. Aronson DC, Meyers RL (2016) Malignant tumors of the liver in children. Semin Pediatr Surg 25:265–275

    Article  PubMed  Google Scholar 

  27. Meyers AB, Towbin AJ, Geller JI et al (2012) Hepatoblastoma imaging with gadoxetate disodium-enhanced MRI — typical, atypical, pre- and post-treatment evaluation. Pediatr Radiol 42:859–866

    Article  PubMed  Google Scholar 

  28. Cistaro A, Treglia G, Pagano M et al (2013) A comparison between (18F)F-FDG PET/CT imaging and biological and radiological findings in restaging of hepatoblastoma patients. Biomed Res Int 2013:709037. https://doi.org/10.1155/2013/709037

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meyers RL, Tiao G, de Ville de Goyet J et al (2014) Hepatoblastoma state of the art: pre-treatment extent of disease, surgical resection guidelines and the role of liver transplantation. Curr Opin Pediatr 26:29–36

    Article  PubMed  CAS  Google Scholar 

  30. O'Neill AF, Towbin AJ, Krailo MD et al (2017) Characterization of pulmonary metastases in children with hepatoblastoma treated on children's oncology group protocol AHEP0731 (the treatment of children with all stages of hepatoblastoma): a report from the Children's Oncology Group. J Clin Oncol 35:3465–3473

    Article  PubMed  Google Scholar 

  31. Millar AJW, Cox S, Davidson A (2017) Management of bilateral Wilms tumours. Pediatr Surg Int 33:737–745

    Article  PubMed  Google Scholar 

  32. McDonald K, Duffy P, Chowdhury T et al (2013) Added value of abdominalcross-sectional imaging (CT or MRI) in staging of Wilms' tumours. Clin Radiol 68:16–20

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez CV, Mullen EA, Chi YY et al (2018) Outcome and prognostic factors in stage III favorable-histology Wilms tumor: a report from the Children's Oncology Group study AREN0532. J Clin Oncol 36:254–261

    Article  PubMed  Google Scholar 

  34. Servaes S, Khanna G, Naranjo A et al (2015) Comparison of diagnostic performance of CT and MRI for abdominal staging of pediatric renal tumors: a report from the Children's Oncology Group. Pediatr Radiol 45:166–172

    Article  PubMed  Google Scholar 

  35. Khanna G, Naranjo A, Hoffer F et al (2013) Detection of preoperative Wilms tumor rupture with CT: a report from the Children's Oncology Group. Radiology 266:610–617

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grundy PE, Green DM, Dirks AC et al (2012) Clinical significance of pulmonary nodules detected by CT and not CXR in patients treated for favorable histology Wilms tumor on national Wilms tumor studies-4 and -5: a report from the Children's Oncology Group. Pediatr Blood Cancer 59:631–635

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dome JS, Graf N, Geller JI et al (2015) Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol 33:2999–3007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McHugh K (2007) Renal and adrenal tumours in children. Cancer Imaging 7:41–51

    Article  PubMed  PubMed Central  Google Scholar 

  39. Irtan S, Ehrlich PF, Pritchard-Jones K (2016) Wilms tumor: "state-of-the-art" update, 2016. Semin Pediatr Surg 25:250–256

    Article  PubMed  Google Scholar 

  40. Littooij AS, Humphries PD, Olsen OE (2015) Intra- and interobserver variability of whole-tumour apparent diffusion coefficient measurements in nephroblastoma: a pilot study. Pediatr Radiol 45:1651–1660

    Article  PubMed  PubMed Central  Google Scholar 

  41. Littooij AS, Nikkels PG, Hulsbergen-van de Kaa CA et al (2017) Apparent diffusion coefficient as it relates to histopathology findings in post-chemotherapy nephroblastoma: a feasibility study. Pediatr Radiol 47:1608–1614

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qin Z, Tang Y, Wang H et al (2015) Use of 18F-FDG-PET-CT for assessment of response to neoadjuvant chemotherapy in children with Wilms tumor. J Pediatr Hematol Oncol 37:396–401

    Article  PubMed  CAS  Google Scholar 

  43. Moinul Hossain AK, Shulkin BL, Gelfand MJ et al (2010) FDG positron emission tomography/computed tomography studies of Wilms' tumor. Eur J Nucl Med Molec Imaging 37:1300–1308

    Article  CAS  Google Scholar 

  44. Kaste SC (2011) Oncological imaging: tumor surveillance in children. Pediatr Radiol 41:505–508

    Article  PubMed  PubMed Central  Google Scholar 

  45. Howell L, Mensah A, Brennan B et al (2005) Detection of recurrence in childhood solid tumors. Cancer 103:1274–1279

    Article  PubMed  Google Scholar 

  46. Voss SD, Chen L, Constine LS et al (2012) Surveillance computed tomography imaging and detection of relapse in intermediate- and advanced-stage pediatric Hodgkin's lymphoma: a report from the Children's Oncology Group. J Clin Oncol 30:2635–2640

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rojas Y, Guillerman RP, Zhang W et al (2014) Relapse surveillance in AFP-positive hepatoblastoma: re-evaluating the role of imaging. Pediatr Radiol 44:1275–1280

    Article  PubMed  Google Scholar 

  48. Owens C, Li BK, Thomas KE et al (2016) Surveillance imaging and radiation exposure in the detection of relapsed neuroblastoma. Pediatr Blood Cancer 63:1786–1793

    Article  PubMed  CAS  Google Scholar 

  49. Federico SM, Brady SL, Pappo A et al (2015) The role of chest computed tomography (CT) as a surveillance tool in children with high-risk neuroblastoma. Pediatr Blood Cancer 62:976–981

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mosse YP, Voss SD, Lim MS et al (2017) Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children's Oncology Group study. J Clin Oncol 35:3215–3221

    Article  PubMed  Google Scholar 

  51. Pandit-Taskar N, Zanzonico P, Staton KD et al (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59:147–153

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kong G, Hofman MS, Murray WK et al (2016) Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol 38:87–96

    Article  PubMed  CAS  Google Scholar 

  53. Piccardo A, Lopci E, Conte M et al (2012) Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Molec Imaging 39:57–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Annika T. Voss for the artwork in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan D. Voss.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, S.D. Staging and following common pediatric malignancies: MRI versus CT versus functional imaging. Pediatr Radiol 48, 1324–1336 (2018). https://doi.org/10.1007/s00247-018-4162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4162-4

Keywords

Navigation