Skip to main content

Advertisement

Log in

Principles and basic concepts of molecular imaging

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Advanced knowledge in molecular biology and new technological developments in imaging modalities and contrast agents calls for molecular imaging (MI) to play a major role in the near future in many human diseases (Weissleder and Mahmood Radiology 219:316–333, 2001). Imaging systems are providing higher signal-to-noise ratio and higher spatial and/or temporal resolution. New specific contrast agents offer the opportunity to drive new challenges for obtaining functional and biological information on tissue characteristics and tissue processes. All this information could be relevant for diagnosis, prognosis and treatment follow-up and to drive local therapies, enhancing local drug/gene delivery. The recent explosion of all these developments is a radical change of perspective in our imaging community because they could have a tremendous impact on our clinical practice and on teaching programs and they call for a more prominent multidisciplinary approach in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    CAS  PubMed  Google Scholar 

  2. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  3. Hu S, Wang LV (2010) Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt 15:011101

    Article  PubMed  Google Scholar 

  4. Davis SC, Pogue BW, Springett R et al (2008) Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instrum 79:064302

    Article  PubMed  Google Scholar 

  5. Cao L, Breithaupt M, Peter J (2010) Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging. Phys Med Biol 55:1591–1606

    Article  PubMed  Google Scholar 

  6. Dobrucki LW, Sinusas AJ (2010) PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol 7:38–47

    Article  PubMed  Google Scholar 

  7. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312

    Article  CAS  PubMed  Google Scholar 

  8. van de Ven S, Wiethoff A, Nielsen T et al (2010) A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 12:343–348

    Article  PubMed  Google Scholar 

  9. Dothager RS, Flentie K, Moss B et al (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 20:45–53

    Article  CAS  PubMed  Google Scholar 

  10. Frangioni JV (2009) The problem is background, not signal. Mol Imaging 8:303–304

    PubMed  Google Scholar 

  11. Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9:117–127

    PubMed  Google Scholar 

  12. Vande Velde G, Baekelandt V, Dresselaers T et al (2009) Magnetic resonance imaging and spectroscopy methods for molecular imaging. Q J Nucl Med Mol Imaging 53:565–585

    CAS  PubMed  Google Scholar 

  13. Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111:1620–1629

    CAS  PubMed  Google Scholar 

  14. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  PubMed  Google Scholar 

  15. Penuelas I, Mazzolini G, Boan JF et al (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128:1787–1795

    Article  CAS  PubMed  Google Scholar 

  16. Canet-Soulas E, Letourneur D (2007) Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Magma 20:129–142

    Article  CAS  PubMed  Google Scholar 

  17. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86

    Article  PubMed  Google Scholar 

  18. Nahrendorf M, Sosnovik DE, French BA et al (2009) Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2:56–70

    Article  PubMed  Google Scholar 

  19. Sinusas AJ, Bengel F, Nahrendorf M et al (2008) Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 1:244–256

    Article  PubMed  Google Scholar 

  20. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  PubMed  Google Scholar 

  21. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  CAS  PubMed  Google Scholar 

  22. Corot C, Robert P, Idee JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  PubMed  Google Scholar 

  23. McAteer MA, Akhtar AM, von Zur MC et al (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27

    Article  CAS  PubMed  Google Scholar 

  24. Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4:143–164

    PubMed  Google Scholar 

  25. Hauger O, Delalande C, Deminiere C et al (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217:819–826

    CAS  PubMed  Google Scholar 

  26. Hauger O, Grenier N, Deminere C et al (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17:2898–2907

    Article  PubMed  Google Scholar 

  27. Dousset V, Brochet B, Deloire MS et al (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR 27:1000–1005

    CAS  PubMed  Google Scholar 

  28. Saleh A, Schroeter M, Ringelstein A et al (2007) Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38:2733–2737

    Article  PubMed  Google Scholar 

  29. Sigovan M, Boussel L, Sulaiman A et al (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409

    Article  PubMed  Google Scholar 

  30. Reiner CS, Lutz AM, Tschirch F et al (2009) USPIO-enhanced magnetic resonance imaging of the knee in asymptomatic volunteers. Eur Radiol 19:1715–1722

    Article  CAS  PubMed  Google Scholar 

  31. Bierry G, Jehl F, Boehm N et al (2008) Macrophage activity in infected areas of an experimental vertebral osteomyelitis model: USPIO-enhanced MR imaging–feasibility study. Radiology 248:114–123

    Article  PubMed  Google Scholar 

  32. Kraitchman DL, Bulte JW (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103:105–113

    Article  CAS  PubMed  Google Scholar 

  33. de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  34. Bessaad A, Sigovan M, Alsaid H et al (2010) M1-activated macrophages migration, a marker of aortic atheroma progression: a preclinical MRI study in mice. Invest Radiol 45:262–269

    Article  CAS  PubMed  Google Scholar 

  35. Oude Engberink RD, van der Pol SM, Dopp EA et al (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474

    Article  PubMed  Google Scholar 

  36. Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938

    Article  CAS  PubMed  Google Scholar 

  37. Liu ZY, Wang Y, Liang CH et al (2009) In vitro labeling of mesenchymal stem cells with superparamagnetic iron oxide by means of microbubble-enhanced US exposure: initial experience. Radiology 253:153–159

    Article  PubMed  Google Scholar 

  38. Bernsen MR, Moelker AD, Wielopolski PA et al (2010) Labelling of mammalian cells for visualisation by MRI. Eur Radiol 20:255–274

    Article  PubMed  Google Scholar 

  39. Alsaid H, De Souza G, Bourdillon MC et al (2009) Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of ApoE-/- mice: a pilot study. Invest Radiol 44:151–158

    Article  CAS  PubMed  Google Scholar 

  40. Chaubet F, Bertholon I, Serfaty JM et al (2007) A new macromolecular paramagnetic MR contrast agent binds to activated human platelets. Contrast Media Mol Imaging 2:178–188

    Article  CAS  PubMed  Google Scholar 

  41. Nahrendorf M, Jaffer FA, Kelly KA et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511

    Article  CAS  PubMed  Google Scholar 

  42. Choi KS, Kim SH, Cai QY et al (2007) Inflammation-specific T1 imaging using anti-intercellular adhesion molecule 1 antibody-conjugated gadolinium diethylenetriaminepentaacetic acid. Mol Imaging 6:75–84

    CAS  PubMed  Google Scholar 

  43. Daldrup-Link HE, Meier R, Rudelius M et al (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15:4–13

    Article  PubMed  Google Scholar 

  44. Towner RA, Smith N, Doblas S et al (2008) In vivo detection of c-Met expression in a rat C6 glioma model. J Cell Mol Med 12:174–186

    Article  CAS  PubMed  Google Scholar 

  45. Pirollo KF, Dagata J, Wang P et al (2006) A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol Imaging 5:41–52

    PubMed  Google Scholar 

  46. Heroux J, Gharib AM, Danthi NS et al (2010) High-affinity alphavbeta3 integrin targeted optical probe as a new imaging biomarker for early atherosclerosis: initial studies in Watanabe rabbits. Mol Imaging Biol 12:2–8

    Article  PubMed  Google Scholar 

  47. Artemov D, Mori N, Okollie B et al (2003) MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49:403–408

    Article  CAS  PubMed  Google Scholar 

  48. Funovics MA, Kapeller B, Hoeller C et al (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843–850

    Article  CAS  PubMed  Google Scholar 

  49. Gee MS, Upadhyay R, Bergquist H et al (2008) Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology 248:925–935

    Article  PubMed  Google Scholar 

  50. Wang X, DeFrances MC, Dai Y et al (2002) A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell 9:411–421

    Article  CAS  PubMed  Google Scholar 

  51. Towner RA, Smith N, Tesiram YA et al (2007) In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging. Mol Imaging 6:18–29

    CAS  PubMed  Google Scholar 

  52. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  CAS  PubMed  Google Scholar 

  53. Chang SS (2004) Overview of prostate-specific membrane antigen. Rev Urol 6(Suppl 10):S13–S18

    Article  PubMed  Google Scholar 

  54. Serda RE, Adolphi NL, Bisoffi M et al (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6:277–288

    CAS  PubMed  Google Scholar 

  55. Neubauer AM, Myerson J, Caruthers SD et al (2008) Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 60:1066–1072

    Article  CAS  PubMed  Google Scholar 

  56. Schmieder AH, Winter PM, Caruthers SD et al (2005) Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627

    Article  CAS  PubMed  Google Scholar 

  57. Burtea C, Laurent S, Murariu O et al (2008) Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 78:148–157

    Article  CAS  PubMed  Google Scholar 

  58. Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284

    Article  CAS  PubMed  Google Scholar 

  59. Kang HW, Torres D, Wald L et al (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599–609

    CAS  PubMed  Google Scholar 

  60. Boutry S, Laurent S, Elst LV et al (2006) Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging 1:15–22

    Article  CAS  PubMed  Google Scholar 

  61. Radermacher KA, Beghein N, Boutry S et al (2009) In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: a multimodal approach using MR imaging and EPR spectroscopy. Invest Radiol 44:398–404

    Article  CAS  PubMed  Google Scholar 

  62. Shaw SY (2009) Molecular imaging in cardiovascular disease: targets and opportunities. Nat Rev Cardiol 6:569–579

    Article  CAS  PubMed  Google Scholar 

  63. Amirbekian V, Lipinski MJ, Briley-Saebo KC et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104:961–966

    Article  CAS  PubMed  Google Scholar 

  64. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704

    Article  CAS  PubMed  Google Scholar 

  65. Hersey P, Zhang XD (2003) Resistance of follicular lymphoma cells to chemotherapy is more than just BCL-2. Cancer Biol Ther 2:541–543

    CAS  PubMed  Google Scholar 

  66. Rana A, Sathyanarayana P, Lieberthal W (2001) Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 6:83–102

    Article  CAS  PubMed  Google Scholar 

  67. Hakumaki JM, Brindle KM (2003) Techniques: Visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci 24:146–149

    Article  CAS  PubMed  Google Scholar 

  68. Krishnan AS, Neves AA, de Backer MM et al (2008) Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 246:854–862

    Article  PubMed  Google Scholar 

  69. Sarda-Mantel L, Coutard M, Rouzet F et al (2006) 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26:2153–2159

    Article  CAS  PubMed  Google Scholar 

  70. Laufer EM, Winkens HM, Corsten MF et al (2009) PET and SPECT imaging of apoptosis in vulnerable atherosclerotic plaques with radiolabeled Annexin A5. Q J Nucl Med Mol Imaging 53:26–34

    CAS  PubMed  Google Scholar 

  71. Zhao M, Beauregard DA, Loizou L et al (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244

    Article  CAS  PubMed  Google Scholar 

  72. Lancelot E, Amirbekian V, Brigger I et al (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425–432

    Article  CAS  PubMed  Google Scholar 

  73. Lepage M, Dow WC, Melchior M et al (2007) Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Mol Imaging 6:393–403

    CAS  PubMed  Google Scholar 

  74. Schellenberger E, Rudloff F, Warmuth C et al (2008) Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 19:2440–2445

    Article  CAS  PubMed  Google Scholar 

  75. Chen JW, Querol Sans M, Bogdanov A Jr et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240:473–481

    Article  PubMed  Google Scholar 

  76. Nahrendorf M, Sosnovik D, Chen JW et al (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160

    Article  CAS  PubMed  Google Scholar 

  77. [?twb=.27w]?>Chen JW, Breckwoldt MO, Aikawa E et al (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131:1123–1133

    Article  PubMed  Google Scholar 

  78. Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505

    Article  PubMed  Google Scholar 

  79. Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    Article  CAS  PubMed  Google Scholar 

  80. Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  81. MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  CAS  PubMed  Google Scholar 

  82. Rome C, Couillaud F, Moonen CT (2007) Gene expression and gene therapy imaging. Eur Radiol 17:305–319

    Article  PubMed  Google Scholar 

  83. Grenier N, Hauger O, Eker O et al (2008) Molecular magnetic resonance imaging of the genitourinary tract: recent results and future directions. Magn Reson Imaging Clin N Am 16:627–641, viii

    Article  PubMed  Google Scholar 

  84. Quesson B, Vimeux F, Salomir R et al (2002) Automatic control of hyperthermic therapy based on real-time Fourier analysis of MR temperature maps. Magn Reson Med 47:1065–1072

    Article  PubMed  Google Scholar 

  85. Eker O, Quesson B, Rome C et al (2010) Combination of cell delivery and thermo-inducible transcription for in vivo spatio-temporal control of gene expression: a feasibility study. Radiology In press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grenier, N., Brader, P. Principles and basic concepts of molecular imaging. Pediatr Radiol 41, 144–160 (2011). https://doi.org/10.1007/s00247-010-1835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1835-z

Keywords

Navigation