Skip to main content
Log in

Gibbsian Dynamics and Ergodicity of Stochastic Micropolar Fluid System

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The theory of micropolar fluids emphasizes the micro-structure of fluids by coupling the Navier–Stokes equations with micro-rotational velocity, and is widely viewed to be well fit, better than the Navier–Stokes equations, to describe fluids consisting of bar-like elements such as liquid crystals made up of dumbbell molecules or animal blood. Following the work of Weinan et al. (Commun Math Phys 224:83–106, 2001), we prove the existence of a unique stationary measure for the stochastic micropolar fluid system with periodic boundary condition, forced by only the determining modes of the noise and therefore a type of finite-dimensionality of micropolar fluid flow. The novelty of the manuscript is a series of energy estimates that is reminiscent from analysis in the deterministic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, G., Shahinpoor, M.: Universal stability of magneto-micropolar fluid motions. Int. J. Eng. Sci. 12, 657–663 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  3. Bricmont, J., Kupiainen, A., Lefevere, R.: Ergodicity of the 2D Navier-Stokes equations with random forcing. Commun. Math. Phys. 224, 65–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capiński, M., Peszat, S.: Local existence and uniqueness of strong solutions to 3-D stochastic Navier-Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 4, 185–200 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252, 2698–2724 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics . University of Chicago Press, Chicago (1988)

  7. Da Prato, G., Debussche, A.: Ergodicity for the 3D Navier-Stokes equations. J. Math. Pures Appl. 82, 877–947 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  11. Dong, B.-Q., Chen, Z.-M.: Regularity criteria of weak solutions to the three-dimensional micropolar flows. J. Math. Phys. 50, 103525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, B.-Q., Chen, Z.-M.: Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows. Discret. Contin. Dyn. Syst. 23(3), 765–784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, B.-Q., Zhang, Z.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J. Differ. Equ. 249, 200–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. E, W., Liu, D.: Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Stat. Phys. 108, 1125–1156 (2002)

  15. E, W., Mattingly, J.C., Sinai, Y.: Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys. 224, 83–106 (2001)

  16. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  18. Ferrario, B.: The Bénard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl. 4, 101–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferrario, B.: Ergodic results for stochastic navier-stokes equation. Stoch. Rep. 60, 271–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Ferrario, Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure, Annali di Matematica pura ed applicata, CLXXVII, 331–347 (1999)

  21. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 1, 403–423 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Flandoli, F., Maslowski, B.: Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 171, 119–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Cambridge University Press, Cambridge, United Kingdom (2004)

    MATH  Google Scholar 

  24. Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des e’quations de Navier-Stokes en dimension 2. Rend. Semin. Mat. Univ. Padova 39, 1–34 (1967)

    MATH  Google Scholar 

  25. Galdi, G.P., Rionero, S.: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int. J. Eng. Sci. 15, 105–108 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. 164, 993–1032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hmidi, T., Keraani, S., Rousset, R.: Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation. J. Differ. Equ. 249, 2147–2174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krylov, N., Bogoliubov, N.: La théorie générale de la mesure dans son application a l’étude des systémes de la mécanique nonlinéaire. Ann. Math. 38, 65–113 (1937)

    Article  MathSciNet  Google Scholar 

  29. Lee, J., Wu, M.-Y.: Ergodicity for the dissipative Boussinesq equations with random forcing. J. Stat. Phys. 117, 929–973 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lukaszewicz, G.: Micropolar Fluids, Theory and Applications. Birkh\(\ddot{a}\)user, Boston (1999)

  31. Mattingly, J. C.: The Stochastic Navier-Stokes Equation, Energy Estimates and Phase Space Contraction, Ph.D. Thesis, Princeton University, Princeton (1998)

  32. Mattingly, J.C.: Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Commun. Math. Phys. 206, 273–288 (1999)

    Article  MATH  Google Scholar 

  33. Mattingly, J.C.: Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230, 421–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ortega-Torres, E.E., Rojas-Medar, M.A.: Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl. Anal. 4, 109–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rojas-Medar, M.A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math. Nachr. 188, 301–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, M.-Y.: Stochastic Boussinesq equations and the infinite dimensional Malliavin calculus, Ph.D. Thesis, Princeton University, Princeton (2006)

  37. Xue, L.: Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. Math. Methods Appl. Sci. 34, 1760–1777 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Yamazaki, K.: 3-D stochastic micropolar and magneto-micropolar fluid systems with non-Lipschitz multiplicative noise. Commun. Stoch. Anal. 8, 413–437 (2014)

    MathSciNet  Google Scholar 

  39. Yamazaki, K.: Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete Contin. Dyn. Syst. 35, 2193–2207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yamazaki, K.: Recent Developments on the Micropolar and Magneto-micropolar Fluid Systems: Deterministic and Stochastic Perspectives, Stochastic Equations for Complex Systems: Mathematical Engineering, pp. 85–103. Springer, New York (2015)

  41. Yamazaki, K.: Ergodicity of the two-dimensional magnetic Benard problem. Electron. J. Differ. Equ. 2016, 1–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yamazaki, K.: Exponential convergence of the stochastic micropolar and magneto-micropolar fluid systems. Commun. Stoch. Anal. 10, 271–295 (2016)

    MathSciNet  Google Scholar 

  43. Yamazaki, K.: Remarks on the Large Deviation Principle for the Micropolar, Magneto-Micropolar Fluid Systems, submitted

  44. Yuan, B.: On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space. Proc. Am. Math. Soc. 138(6), 2025–2036 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Yamazaki.

Additional information

The author expresses gratitude to the Referee for valuable suggestions and comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K. Gibbsian Dynamics and Ergodicity of Stochastic Micropolar Fluid System. Appl Math Optim 79, 1–40 (2019). https://doi.org/10.1007/s00245-017-9419-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9419-z

Keywords

Mathematics Subject Classification

Navigation