Skip to main content
Log in

On the convection heat transfer and pressure drop of copper oxide-heat transfer oil Nanofluid in inclined microfin pipe

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this pioneering work, mixed convection heat transfer and pressure drop of the CuO -HTO nanofluid flow in the inclined Microfin pipe is studied experimentally. The flow regime is laminar and temperature of the pipe wall is stable. The influence of nanoparticle and Richardson number on the mixed convection is studied as Richardson number is from 0.1 to 0.7. The results demonstrate that mixed convection heat transfer rate rise substantially with the promotion of nanoparticle mass concentration. Based on the empirical results, the four equations are recommended to be utilised for appraisal of nanofluid flow Nusselt number and Darcy friction factor in term of Richardson number and nanoparticle mass concentration with the peaked deflection of 16%. Moreover, the four equations put forward to appraise the Nusselt number based on the Rayleigh number in inclined pipe from 2,000,000 to 7,000,000. A new correlation is acquired to anticipate the flow Darcy friction factor in the inclined Microfin pipe. Accordingly, the maximum figure of merit is 1.61% which is achieved with 1.5% nanoparticles mass concentration and an inclined angle of 30° at the Richardson number of 0.7. These results show that using nanoparticles is more in favour of heat transfer enhancement rather than in the increase of the pressure drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Cp:

Specific heat capacity (kJ/kg. K.)

D h :

Hydraulics Diameter (m)

f :

Darcy friction factor \( \left({\pi}^2\rho {D}^5\Delta P\right)/2L{\dot{m}}^2 \)

Gr:

Grashof number (β∆tL3ρ2g/μ2)

Gz:

Graetz number (Re Pr D/L)

h :

Convection coefficient (W/m2. K)

k:

Thermal conductivity (W/m. K)

\( \dot{\mathrm{m}} \) :

Mass flow rate (kg/s)

N:

Number of fin

Nu:

Nusselt number (\( \overline{h}/k\Big) \)

Pr:

Prandtl number (μCp/k)

\( \dot{Q} \) :

Flowrate (m3/s)

Re:

Reynolds number (ρuD/μ)

Ra:

Rayleigh number (GrPr)

Ri:

Richardson number (Gr/Re2)

T:

Temperature (K)

ΔP:

Pressure drop (Pa)

U:

Uncertainty (%)

z :

The height of fin (m)

ϑ :

Dynamic viscosity (m2/s)

η:

Figure of merit

ρ :

Density (kg/m3)

∆ρ :

Density difference (kg/m3)

π:

Number of Pi

γ :

Helix angle (°)

θ :

Inclination of tubes (°)

τ :

Vertex angle (°)

φ :

Nanoparticles mass concentration (%)

Ω:

Pumping Power (W)

b :

Characteristics of fluid at average bulk temperature

b f :

Base fluid

b, o:

Bulk outlet

b, i:

Bulk inlet

exp:

Experimental values

nf :

Nanofluid

w :

Appraised at the wall conditions

References

  1. Sider EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tables. Ind Eng Chemist 28:1429–1435. https://doi.org/10.1021/ie50324a027

    Article  Google Scholar 

  2. Brown AR, Thomas MA (1965) Combined free and forced convection heat transfer for laminar flow in horizontal tubes. Ins Mech Eng 7:440. https://doi.org/10.1243/JMES_JOUR_1965_007_066_02

    Google Scholar 

  3. Joye DD (2003) Pressure drop correlation for laminar, mixed convection, aiding flow heat transfer in a vertical tube. Int J Heat Fluid Flow 24:260–266. https://doi.org/10.1016/S0142-727X(02)00238-2

    Article  Google Scholar 

  4. Huang L, Farrell KJ (2010) Mixed convection in vertical tube: high Reynolds number. ASME Proceeding, IHC14–23266, pp. 269–276.doi: https://doi.org/10.1115/IHTC14-23266

  5. Laskowski GM, Kearney SP, Evans G, Greif R (2007) Mixed convection heat transfer to and from a horizontal cylinder in cross-flow with heating from below. Int J Heat Fluid Flow 28:454–468. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.004

    Article  Google Scholar 

  6. Hasadi YMFEI, Busedra AA, Rusturn IM (2007) Laminar mixed convection in the entrance region of horizontal semicrocular duct with the flat wall at the top. J Heat Transf 129(9):1203–1211. https://doi.org/10.1115/1.2739612

    Article  Google Scholar 

  7. Choudhury D, Pantakar SV (1988) Combined forced and free laminar convection in the entrance region of an inclined isothermal tube. J Heat Transf 110(4a):901–909. https://doi.org/10.1115/1.3250591

    Article  Google Scholar 

  8. Mare T, Voicu I, Miriei J (2006) Experimental analysis of mixed convection in inclined tube. Appl Therm Eng 26(14–15):1677–1683. https://doi.org/10.1016/j.applthermaleng.2005.11.011

    Article  Google Scholar 

  9. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flows, eds. D.A. Signier and H.P. Wang, ASME,NewYork,FED-Vol.231/MID.66:99–105. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/27/043/27043758.pdf

  10. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluid containing oxide nanoparticles. J Heat Transf 12:280–289. https://doi.org/10.1115/1.2825978

    Article  Google Scholar 

  11. Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermos-physical properties and overall performance of MWCNT/ heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Thermal Fluid Sci 40:103–111. https://doi.org/10.1016/j.expthermflusci.2012.02.005

    Article  Google Scholar 

  12. Akhavan- Behabadi MA, Hekmatipour F, Mirhabibi SM, Sajadi B (2015) Experimental investigation of thermal-rheological properties and heat transfer behavior of the heat transfer oil-copper oxide (HTO- CuO) nanofluid in smooth tubes. Exp Thermal Fluid Sci 68:681–688. https://doi.org/10.1016/j.expthermflusci.2015.07.008

    Article  Google Scholar 

  13. Akhavan-Behabadi MA, Hekmatipour F, Mirhabibi SM, Sajadi B (2014) An empirical study on heat transfer and pressure drop properties of heat transfer oil-copper oxide nanofluid in microfin tube. Int commun Heat Mass Transfer 57:150–156. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.025

    Article  Google Scholar 

  14. Madhesh D, Parameshwaran R, Kalaiselvam S (2016) Experimental studies on convective heat transfer and pressure drop characteristics of meta and metal oxide nanofluids under turbulent flow regime. Heat Transfer Eng. 37(5):422–434. https://doi.org/10.1080/01457632.2015.1057448

    Article  Google Scholar 

  15. Amiri A, Shanbedi M, Yarmand H, Arzani HK, Gharehkhani S, Montazer E, Sardri R, Sarsam W, Chew BT, Kazi SN (2015) Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Conv Manage 105:355–367. https://doi.org/10.1016/j.enconman.2015.07.066

    Article  Google Scholar 

  16. Jafarimoghaddam A, Aberoumand S, Aberoumand H, Javaherdeh K (2017) Experimental study on CU/oil nanofluids through concentric annular tube: a correlation. Heat Transfer-Asian Re 46(3):251–260. https://doi.org/10.1002/htj.21210

    Article  Google Scholar 

  17. Abbaslan Arani AA, Aberoumand H, Aberoumand S, Jafari Moghaddam A (2016) An empirical investigation on thermal characteristics and pressure drop of ag-oil nanofluid in concentric annular tube. Heat Mass Transf 52(8):1693–1706. https://doi.org/10.1007/s00231-015-1686-0

    Article  Google Scholar 

  18. Zeinali Heris S, Farzin F, Sardarabadi H (2015) Experimental comparison among thermal characteristics of three metal oxide nanoparticles/turbine oil –based nanofluids under laminar flow regime. Int J Thermophysics 36(4):760–782. https://doi.org/10.1007/s10765-015-1852-0

    Article  Google Scholar 

  19. Moghari RM, Talebi F, Rafee R, Shariat M (2015) Numerical study of pressure drop and thermal chararcteristics of Al2O3-water nanofluid flow in horizontal Alumuli. Heat Transfer Eng. 36(2):166–177. https://doi.org/10.1080/01457632.2014.909193

    Article  Google Scholar 

  20. Ghobadi M, Muzychka YS (2016) A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts. Heat Transfer Eng. 37(10):815–839. https://doi.org/10.1080/01457632.2015.1089735

    Article  Google Scholar 

  21. Ghazvini M, Akhavan-behabadi MA, Rasouli E, Raisee M (2011) Heat transfer properties of nanodiamond-engine oil nanofluid in laminar flow. Heat Transfer Eng 33(6):525–532. https://doi.org/10.1080/01457632.2012.624858

    Article  Google Scholar 

  22. Feng ZZ, Li W (2013) Laminar mixed convection of large-Prandtl number in tube nanofluid flow. Part I: experimental study. Int J Heat Mass Transf 65(10):919–927. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.005

    Article  Google Scholar 

  23. Li W, Fang ZZ (2013) Laminar mixed convection of large-Prandtl number in tube nanofluid flow. Part II: experimental study. Int J Heat Mass Transf 65(10):928–935. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.006

    Article  Google Scholar 

  24. Aberoumand S, Jafarimoghaddam A (2016) On the thermal characteristics of ag/heat transfer oil nanoluids flow inside curved tubes. Appl Therm Eng 108:967–979. https://doi.org/10.1016/j.applthermaleng.2016.06.032

    Article  Google Scholar 

  25. Ben Mansour R, Galanis N, Nguyen CT (2011) Experimental study of mixed convection with water- Al2O3 nanofluid in inclined tube with uniform wall heat flux. Int J Therm Sci 50(3):403–410. https://doi.org/10.1016/j.ijthermalsci.2010.03.016

    Article  Google Scholar 

  26. Derakhshan MM, Akhavan-Behabadi MA, Mohseni SG (2015) Experiments on mixed convection heat transfer and performance evaluation of MWCNT-oil nanofluid in horizontal and vertical microfin tubes. Exp Thermal Fluid Sci 61(2):241–248. https://doi.org/10.1016/j.expthermflusci.2014.11.005

    Article  Google Scholar 

  27. Derakhshan MM, Akhavan-Behabadi MA (2016) Mixed convection of MWCNT-heat transfer oil nanofluid inclined plain and microfin tubes laminar assisted flow. Int J Therm Sci 99:1–8. https://doi.org/10.1016/j.ijthermalsci.2015.07.025

    Article  Google Scholar 

  28. Derakhshan MM, Akhavan-Behabadi MA, Ghazvini M (2015) Rheological characteristics, pressure drop, and skin friction coefficient of MWCNT-oil nanfluid flow inside an incline microfin tube. Heat Transfer Eng. 36(17):1436–1446. https://doi.org/10.1080/01457632.2015.1010915

    Article  Google Scholar 

  29. Akhavan-Behabadi MA, Hekmatipour F, Sajadi B (2016) An empirical study on the mixed convection transfer and pressure drop of HTO/CuO nanofluid inclined tube. Exp Thermal Fluid Sci 78:10–17. https://doi.org/10.1016/j.expthermflusci.2016.04.028.

    Article  Google Scholar 

  30. Ben Mansour R, Galanis N, Nguyen CT (2009) Developing laminar mixed convection of nanofluids in an inclined tube with uniform wall heat flux. Int J Num Math Heat Fluid Flow 19(2):146–164. https://doi.org/10.1108/09615530910930946

    Article  Google Scholar 

  31. Malvandi A, Ganji DD (2015) Fully developed flow ana heat transfer of nanofluid inside a vertical annulas. J Brazilian Soc Mech Sci 37(1):141–147. https://doi.org/10.1007/s40430-014-0139-x

    Article  Google Scholar 

  32. Mirmasoumi S, Behzadmeher A (2012) Effect of nanoparticle mean diameter on the particle migration and thermos-hydraulic behaviour of laminar mixed convection of a nanofluid in an inclined tube. Heat Mass Transf 48(8):1397–1308. https://doi.org/10.1007/s00231-012-0978-x.

    Article  Google Scholar 

  33. Izadi M, Behzadmeher A, Shahmardan M (2015) Effect of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus. Chem Eng Communi 202(12):1693–1702. https://doi.org/10.1080/00986445.2014.910770

    Article  Google Scholar 

  34. Holman JP (2001) Experimental methods for engineers. McGraw Hill, New York. Edition 7, 2001

  35. Rohsenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer, Third Edition. McGraw-Hill, New York

    Google Scholar 

  36. White FM (1998) Fluid Mechanic fourth ed. McGraw-Hill, 4th edition, New York

  37. Jackson TW, Spuerlock JM, Purdy R (1961) Combined free and force convection in a stable temperature horizontal pipe. AICHE J 7(1):38–41. https://doi.org/10.1002/aic.690070111

    Article  Google Scholar 

  38. Ho C-J, Chen W-C, Yan W-M (2013) Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particle. Int Comuni Heat Mass Transfer 48:67–72. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.023

    Article  Google Scholar 

  39. Routbort JL, Singh D, Timofeeva EV, Yu W, France DM (2011) Pumping power of nanofluid in flowing system. J Nanopat Res 13:931–937. https://doi.org/10.1007/s11051-010-019 Akhavan-Behabadi

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Hekmatipour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Based on Holman [34], if the parameter of R depends on V1 to Vn variables which can be gauged with an uncertainty of UV1 to UVn, the overall uncertainty of R is:

$$ {U}_R={\left[{\sum}_{i=1}^n{\left(\frac{\partial R}{{\partial V}_i}\ {U}_{V_i}\right)}^2\right]}^{1/2} $$
(10)

Based on the definition of the Darcy friction factor, Eq. (1):

$$ {U}_f={\left[\ {\left(\frac{\pi^2{D}^5}{L\rho {\dot{Q}}^3}\Delta p{U}_{\dot{Q}}\right)}^2+{\left(\frac{\pi^2{D}^5}{L\rho {\dot{Q}}^2}{U}_{\Delta p}\right)}^2+{\left(\frac{\pi^2{D}^5}{L{\rho}^2{\dot{Q}}^2}\Delta p{U}_{\rho}\right)}^2\right]}^{1/2} $$
(11)

Moreover, for the Nusselt number, Eq. (2):

$$ {U}_{Nu}=\left\{{\left[\frac{\rho {c}_p}{\pi Lk}\mathit{\ln}\left(\frac{T_w-{T}_{b,i}}{T_w-{T}_{b,o}}\right){U}_{\dot{Q}}\right]}^2+{\left[\frac{\rho {c}_p\dot{Q}}{\pi Lk}\frac{T_{b,o}-{T}_{b,i}}{\left({T}_w-{T}_{b,i}\right)\left({T}_w-{T}_{b,o}\right)}{U}_{T_w}\right]}^2+{\left[\frac{\rho {c}_p\dot{Q}}{\pi Lk}\frac{1}{T_w-{T}_{b,i}}{U}_{T_{b,i}}\right]}^2+{\left[\frac{\rho {c}_p\dot{Q}}{\pi Lk}\frac{1}{T_w-{T}_{b,o}}{U}_{T_{b.o}}\right]}^2+{\left[\frac{c_p\dot{Q}}{\pi Lk}\mathit{\ln}\left(\frac{T_w-{T}_{b,i}}{T_w-{T}_{b,o}}\right){U}_{\rho}\right]}^2+{\left[\frac{\dot{\rho Q}}{\pi Lk}\mathit{\ln}\left(\frac{T_w-{T}_{b,i}}{T_w-{T}_{b,o}}\right){U}_{c_p}\right]}^{21/2}\right\} $$
(12)

From the definition of the performance index, Eq. (8), it can be concluded that:

$$ {U}_{\eta }={\left[\ {\left(\frac{1/{h}_{b_f}}{{\Delta p}_{n_f}/{\Delta p}_{b_f}}{U}_{h_{n_f}}\right)}^2+{\left(\frac{h_{n_f}/{h}_{b_f}^2}{{\Delta p}_{n_f}/{\Delta p}_{b_f}}{U}_{h_{b_f}}\right)}^2+{\left(\frac{h_{n_f}/{h}_{b_f}}{{\Delta p}_{n_f}^2/{\Delta p}_{b_f}}{U}_{{\Delta p}_{n_f}}\right)}^2+{\left(\frac{h_{n_f}/{h}_{b_f}}{{\Delta p}_{n_f}}{U}_{{\Delta p}_{n_f}}\right)}^2\right]}^{1/2} $$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmatipour, F., Jalali, M., Hekmatipour, F. et al. On the convection heat transfer and pressure drop of copper oxide-heat transfer oil Nanofluid in inclined microfin pipe. Heat Mass Transfer 55, 433–444 (2019). https://doi.org/10.1007/s00231-018-2417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2417-0

Navigation