Skip to main content
Log in

Outer heat transfer coefficient for condensation of pure components on single horizontal low-finned tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The outer heat transfer coefficient is determined for the condensation of pure components (iso-propanol, n-pentane, n-heptane, iso-octane and water) on low-finned carbon steel, stainless steel and titanium tubes. The outer heat transfer coefficient on these tubes is 3 to 8 times higher than on a smooth tube with the same reference surface area. The experimental data are compared with theoretical models from literature for the condensation of refrigerants and water. These models do not predict all experimental data for the condensation of iso-propanol and hydrocarbons on low-finned tubes with the accuracy given in the respective papers. Therefore, a new approach for calculation of the outer heat transfer coefficient based on dimensionless numbers is developed. With this new equation, it can be predicted with a maximum deviation of ±20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The difficulty of the definition of the Weber number by Kumar et al. [12] is explained in detail by Reif [40].

References

  1. Nußelt W (1916) Die Oberflächenkondensation des Wasserdampfes. Z Ver Dtsch Ing 60(27):541–546, 569–575

    Google Scholar 

  2. Wanniarachchi AS, Marto PJ, Rose JW (1986) Film condensation of steam on horizontal finned tubes: effect of fin spacing. J Heat Tran 108(4):960–966

    Article  Google Scholar 

  3. Marto PJ, Zebrowski D, Wanniarachchi AS, Rose JW (1990) An experimental study of R-113 film condensation on horizontal finned tubes. J Heat Tran 112(3):758–767

    Article  Google Scholar 

  4. Briggs A, Wen X-L, Rose JW (1992) Accurate heat transfer measurements for condensation on horizontal, integral-fin tubes. J Heat Tran 114(3):719–726

    Article  Google Scholar 

  5. Jaber MH, Webb RL (1993) Enhanced tubes for steam condensers. Exper Heat Tran 6:35–54

    Article  Google Scholar 

  6. Briggs A, Rose JW (1995) Condensation performance of some commercial integral fin tubes with steam and CFC113. Exper Heat Tran 8:131–143

    Article  Google Scholar 

  7. Kumar R, Varma HK, Mohanty B, Agrawal KN (1998) Augmentation of outside tube heat transfer coefficient during condensation of steam over horizontal copper tubes. Int Commun Heat Mass 25:81–91

    Article  Google Scholar 

  8. Jung D, Kim C-B, Cho S, Song K (1999) Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for CFC11 and CFC12. Int J Refrig 22:548–557

    Article  Google Scholar 

  9. Belghazi M, Bontemps A, Marvillet C (2002) Condensation heat transfer on enhanced surface tubes, experimental results and predictive theory. J. Heat Tran 124(4):754–761

    Article  Google Scholar 

  10. Belghazi M, Bontemps A, Marvillet C (2002) Filmwise condensation of a pure fluid and a binary mixture in a bundle of enhanced surface tubes. Int J Therm Sci 41:631–638

    Article  Google Scholar 

  11. Kumar R, Varma HK, Mohanty B, Agrawal KN (2002) Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes. Int J Heat Mass Tran 45:201–211

    Article  Google Scholar 

  12. Kumar R, Varma HK, Mohanty B, Agrawal KN (2002) Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes. Int J Refrig 25:111–126

    Article  Google Scholar 

  13. Belghazi M, Bontemps A, Marvillet C (2003) Experimental study of modelling of heat transfer during condensation of pure fluid and binary mixture on a bundle of horizontal finned tubes. Int J Refrig 26:214–223

    Article  Google Scholar 

  14. Fernández-Seara J, Uhía FJ, Diz R, Dopazo A (2010) Condensation of R-134a on horizontal integral-fin titanium tubes. Appl Therm Eng 30:295–301

    Article  Google Scholar 

  15. Al-Badri AR, Gebauer T, Leipertz A, Fröba AP (2013) Element by element prediction model for condensation heat transfer on a horizontal integral finned tube. Int J Heat Mass Tran 62:463–472

    Article  Google Scholar 

  16. Honda H, Nozu S, Mitsumori K (1983) Augmentation of condensation on finned tubes by attaching a porous drainage plate. Proc ASME-JSME Therm Eng Jt Conf 3:289–295

    Google Scholar 

  17. Yau KK, Cooper JR, Rose JW (1985) Effect of fin spacing on the performance of horizontal integral-fin condenser tubes. J. Heat Tran 107(2):377–383

    Article  Google Scholar 

  18. Masuda H, Rose JW (1987) An experimental study of condensation of refrigerant 113 on low integral-fin tube. Heat Transfer and Science Technology, Washington, pp 480–487

    Google Scholar 

  19. Masuda H, Rose JW (1987) Static configuration of liquid film on horizontal tubes with low radial fins: implications for condensation heat transfer. Proc Royal Soc Lond A 410:125–139

    Article  Google Scholar 

  20. Briggs A, Huang XS, Rose JW (1995) An experimental investigation of condensation on integral-fin tubes, effect of fin thickness, height and thermal conductivity. In: Proceedings of the 30th 1995 national heat transfer conference. basic aspects of two phase flow and heat transfer, vol 308. ASME, von Dhir, pp 21–29

  21. Rose JW (1994) An approximate equation for the vapour-side heat-transfer coefficient, for condensation on low-finned tubes. Int J Heat Mass Tran 37(5):865–875

    Article  MATH  Google Scholar 

  22. Briggs A, Rose JW (1994) Effect of fin efficiency on a model for condensation heat transfer on a horizontal Integral-fin Tube. Int J Heat Mass Tran 37(1):457–463

    Article  Google Scholar 

  23. Sukhatme SP, Jagadish BS, Prabhakaran P (1990) Film condensation of R-11 vapor on single horizontal enhanced condenser tubes. J Heat Tran 112.1:229–234

    Article  Google Scholar 

  24. Rudy TM, Webb RL (1983) Theoretical model for condensation on horizontal integral-fin tubes, vol 79. Heat Transfer Conference AlChE Symposium Series, New York, pp 11–18

    Google Scholar 

  25. Webb RL, Murawski CG (1990) Row effect for R-11 condensation on enhanced tubes. J Heat Transfer 112.3:768–776

    Article  Google Scholar 

  26. Masuda H, Rose JW (1987) An experimental study of condensation of refrigerant 113 on low integral-fin tube. Heat Transfer and Science Technology, Washington, pp 480–487

    Google Scholar 

  27. Marto PJ, Zebrowski D, Wanniarachchi AS, Rose JW (1988) Film condensation of R-113 on horizontal finned tubes, ASME symposium, HTD-96. Proc 1988 Nat Heat Tran Conf 2:583–592

    Google Scholar 

  28. Gogonin II, Dorokhov AR (1981) Enhancement of heat transfer in horizontal shell-and-tube condensers. Heat Tran-Sov Res 13.3:119–126

    Google Scholar 

  29. Katz DL, Hope RE, Datsko SC, Robinson DB (1947) Condensation of freon-12 with finned tubes. Refrigerating Eng 33:211–217

    Google Scholar 

  30. Pearson JF, Withers JG (1969) New finned tube configuration improves refrigerant condensing. ASHRAE J 11.6:77–82

    Google Scholar 

  31. Beatty KO, Katz DL (1948) Condensation of vapors on outside of finned tubes. Chem Eng Prog 44:55–70

    Google Scholar 

  32. Reif A, Büchner A, Rehfeldt S, Klein H (2015) Äußerer Wärmeübergangskoeffizient bei der Kondensation von Reinstoffen an einem horizontalen Rippenrohr. Chem Ing Tech 87:260–269

    Article  Google Scholar 

  33. Wieland (2015) Niedrigberippte Rohre GEWA-K und GEWA-KS, Produktkatalog Wieland-Werke AG

  34. Ullrich C, Bodmer T (2013) D6.1: Metalle und metalllegierungen, VDI-Wärmeatlas. Springer-Verlag, Berlin

    Google Scholar 

  35. MatWeb (2015) Material Property Data, Available: http://www.matweb.com

  36. Gnielinski V (2013) On heat transfer in tubes. Int J Heat Mass Tran 63:134–140

    Article  Google Scholar 

  37. Konakov PK (1946) Eine neue Formel für den Reibungskoeffizienten glatter Rohre (Orig. Russ). Ber Akad Wiss UdSSR L1.7:503–506

    Google Scholar 

  38. Büchner A, Reif A, Rehfeldt S, Klein H (2015) Problematik einheitlicher Betrachtungen des Wärmedurchgangs bei der Kondensation an strukturierten Rohren. Chem Ing Tech 87:1–6

    Article  Google Scholar 

  39. Ji W-T, Zhao C-Y, Zhang D-C, Li Z-Y, He Y-L, Tao W-Q (2014) Condensation of R134a outside horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int J Heat Mass Tran 77:194–201

    Article  Google Scholar 

  40. Reif A (2016) Kondensation von Reinstoffen an horizontalen Rohren, Dissertation. Technische Universität München, München

    Google Scholar 

  41. Adamek T (1981) Bestimmung der Kondensationsgrößen auf feingewellten Oberflächen zur Auslegung optimaler Wandprofile. Wärme-Stoffübertragung 15:255–270

    Article  Google Scholar 

  42. Gregorig R (1954) Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen. Z Angew Math Phys 5:36–49

    Article  MATH  Google Scholar 

  43. Laplace PS (1805) Traité de Mécanique Céleste, 4 De l’Imprimerie De Crapelet

  44. Young T (1805) An Essay on the Cohesion of Fluids. S. 65-87. Philosophical Transactions of the Royal Society of London, London, p 95

    Google Scholar 

  45. Briggs A, Rose JW (1999) An evaluation of models for condensation heat transfer on low-finned tubes. Enhanc Heat Tran 6:51–60

    Article  Google Scholar 

  46. Rudy TM, Webb RL (1983) Theoretical model for condensation on horizontal integral-fin tubes, vol 79. Heat Transfer Conference AlChE Symposium Series, New York, pp 11–18

    Google Scholar 

  47. Mitrovic J (2005) Flow structures of a liquid film falling on horizontal tubes. Chem Eng Technol 28(6):684–694

    Article  Google Scholar 

  48. Honda H, Nozu C, Takeda Y (1987) Flow characteristics of condensate on a vertical column of horizontal low finned tubes. ASME-JSME Therm Eng Jt Conf 1:517–524

    Google Scholar 

  49. Boucher DF, Alves GE (1959) Dimensionless numbers. Chem Eng Prog 55(9):55–64

    Google Scholar 

  50. Webb RL (1988) Enhancement of film condensation. Int Commun Heat Mass 15:475–507

    Article  Google Scholar 

  51. Bejan A, Kraus AD (2003) Heat transfer handbook, vol 727. Wiley, New York

    Google Scholar 

  52. Holman JP (1989) Heat transfer, vol 497. McGraw Hill, New York

    Google Scholar 

  53. Stichlmair J (1990) Kennzahlen und Ähnlichkeitsgesetze im Ingenieurwesen. Altos-Verlag Doris Stichlmair, Essen

    Google Scholar 

Download references

Acknowledgments

The authors thank the German Bundesministerium für Bildung und Forschung (BMBF) for the funding of the joint research project !nnovA2 (www.innova2.de, FKZ 033RC1013D) and the Wieland Werke AG for the supply of the tubes. Further thanks to the TUM Graduate School for supporting the authors during their doctorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Reif.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reif, A., Büchner, A., Rehfeldt, S. et al. Outer heat transfer coefficient for condensation of pure components on single horizontal low-finned tubes. Heat Mass Transfer 55, 3–16 (2019). https://doi.org/10.1007/s00231-017-2184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2184-3

Keywords

Navigation