Skip to main content
Log in

On thermal conductivity of gas mixtures containing hydrogen

  • Technical Note
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. \(\hbox {H}_2{-}\hbox {O}_2\) mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569–579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361–369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Zhukov VP (2015) Computational fluid dynamics simulations of a \(\text{GO}_2/\text{GH}_2\) single element combustor. J Propul Power 31(6):1707–1714. doi:10.2514/1.B35654

    Article  Google Scholar 

  2. ANSYS, Inc., Canonsburg, PA: ANSYS CFX-Solver Theory Guide (2012). Release 14.5

  3. Gray P, Holland S, Maczek AOS (1969) Thermal conductivities of binary gaseous mixtures of hydrogen, deuterium, oxygen and nitrous oxide. Trans Faraday Soc 65:1032–1043. doi:10.1039/TF9696501032

    Article  Google Scholar 

  4. Mathur S, Tondon PK, Saxena SC (1967) Heat conductivity in ternary gas mixtures. Mol Phys 12(6):569–579

    Article  Google Scholar 

  5. Kee RJ, Rupley FM, Miller JA (1989) CHEMKIN-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009, Sandia National Laboratories, Livermore, CA 94551

  6. Goodwin DG, Moffat HK, Speth RL(2015) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org. Version 2.2.0

  7. Zhukov VP (2012) Verification, validation, and testing of kinetic mechanisms of hydrogen combustion in fluid-dynamic computations. ISRN Mech Eng 2012(2012):11. doi:10.5402/2012/475607

    Google Scholar 

  8. Homepage of the DLR TAU code. http://tau.dlr.de/. Accessed 28 Jan 2016

  9. Karl S (2010) Numerical investigation of a generic scramjet configuration. Ph.D. thesis, Dresden University of Technology

  10. Herning F, Zipperer L (1936) Beitrag zur Berechnung der Zähigkeit technischer Gasgemische aus den Zähigkeitswerten der Einzelbestandteile. Das Gas- und Wasserfach 5:69–73

    Google Scholar 

  11. Wassiljewa A (1904) Wärmeleitung in Gasgemischen. Phys Z 22:737–742

    MATH  Google Scholar 

  12. Vargaftik N (1993) Handbook of thermal conductivity of liquids and gases. CRC Press, Boca Raton

  13. Mason EA, Saxena SC (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys Fluids 1(5):361–369. doi:10.1063/1.1724352

    Article  MathSciNet  Google Scholar 

  14. Jarczyk MM (2013) Numerische Modellierung von turbulenten Strömungen realer Gasgemische. Ph.D. thesis, Universität der Bundeswehr München

  15. OpenFOAM. http://www.openfoam.org/. Accessed 28 Jan 2016

  16. Chung TH, Ajlan M, Lee LL, Starling KE (1988) Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind Eng Chem Res 27:671–679

    Article  Google Scholar 

  17. Oefelein JC, Yang V (1998) Modeling high-pressure mixing and combustion processes in liquid rocket engines. J Propul Power 14(5):843–857

    Article  Google Scholar 

  18. Ely JF, Hanley HJM (1983) Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures. Ind Eng Chem Fundam 22:90–97

    Article  Google Scholar 

  19. Lindsay AL, Bromley LA (1950) Thermal conductivity of gas mixtures. Ind Eng Chem 42(8):1508–1511. doi:10.1021/ie50488a017

    Article  Google Scholar 

  20. Hirschfelder JO (1957) Heat conductivity in polyatomic, electronically excited, or chemically reacting mixtures. In: 6th Int. Symp. on Combustion, Rheinhold Publishing Corporation, New York, pp. 351–366

  21. Zhukov VP, Suslov DI (2016) Measurements and modelling of wall heat fluxes in rocket combustion chamber with porous injector head. Aerosp Sci Technol 48:67–74. doi:10.1016/j.ast.2015.10.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.P., Pätz, M. On thermal conductivity of gas mixtures containing hydrogen. Heat Mass Transfer 53, 2219–2222 (2017). https://doi.org/10.1007/s00231-016-1952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1952-9

Keywords

Navigation