Skip to main content
Log in

On a sharp inequality of L. Fontana for compact Riemannian manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we refine a sharp inequality established by Fontana (Comment. Math. Helvetici 68:415–454, 1993). Precisely, for any compact Riemannian manifold without boundary, there exists a uniform constant depending on positive lower bound of the injectivity radius, upper bound of the diameter, and bounds of the curvature tensor and its covariant derivatives such that Fontana’s inequality holds. Also we establish an analog on oriented compact Riemannian manifold with smooth boundary. Though our method is based on the argument of L. Fontana and thereby closely on that of Adams (Ann. Math. 128:385–398, 1988), some technical difficulties must be smoothed. For the first problem, we need a uniform elliptic estimate on manifolds; While for the second problem, we use the Green function for a larger manifold with boundary to represent functions supported in the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, T.: Nonlinear Analysis on Manifolds, Monge–Ampere Equations. Springer, New York (1982)

    Book  MATH  Google Scholar 

  3. Fontana, L.: Sharp bordline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Springer, New York (2003)

    MATH  Google Scholar 

  5. Giraud, G.: Sur la problème de Dirichlet généralise. Ann. Sc. Ecole Norm. Sup. 46, 131–245 (1929)

    Article  MATH  Google Scholar 

  6. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  7. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635. Springer, New York (1996)

    MATH  Google Scholar 

  8. Hedberg, L.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, P., Yau, S.T.: Eigenvalues of a compact Riemannian manifold. AMS Proc. Symp. Pure Math. 36, 205–239 (1980)

    Article  MathSciNet  Google Scholar 

  10. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1091 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. O’Neil, R.: Converlusion operators and \(L(p, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peetre, J.: Espaces d’interpolation et theoreme de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pohozaev, S.: The Sobolev embedding in the special case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Reseach 1964–1965, Mathematics Sections, pp. 158–170, Moscov. Energet. Inst., Moscow, (1965)

  14. Stein, E.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  15. Trudinger, N.: On embeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  16. Yang, Y.: Trudinger–Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal. 263, 1894–1938 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ. 258, 3161–3193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, Y.: A Trudinger–Moser inequality on compact Riemannian surface involving Gaussian curvature. J. Geom. Anal. 26, 2893–2913 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yudovich, V.: Some estimates connected with integral operators and with solutions of elliptic equations. Sov. Math. Docl. 2, 746–749 (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y. On a sharp inequality of L. Fontana for compact Riemannian manifolds. manuscripta math. 157, 51–79 (2018). https://doi.org/10.1007/s00229-017-0986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0986-8

Mathematics Subject Classification

Navigation