Skip to main content
Log in

On Brauer p-dimensions and index-exponent relations over finitely-generated field extensions

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let E be a field of absolute Brauer dimension abrd(E), and F/E a transcendental finitely-generated extension. This paper shows that the Brauer dimension Brd(F) is infinite, if abrd\({(E) = \infty }\) . When the absolute Brauer p-dimension abrd p (E) is infinite, for some prime number p, it proves that for each pair (n, m) of integers with \({n \ge m > 0}\), there is a central division F-algebra of Schur index p n and exponent p m. Lower bounds on the Brauer p-dimension Brd p (F) are obtained in some important special cases where abrd p \({(E) < \infty }\) . These results solve negatively a problem posed by Auel et al. (Transf. Groups 16:219–264, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, A.A.: Structure of algebras. Am. Math. Soc. Colloq. Publ. XXIV (1939)

  2. Auel A., Brussel E., Garibaldi S., Vishne U.: Open problems on central simple algebras. Transf. Groups 16, 219–264 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cassels, J.W.S., Fröhlich, A. (eds.): Algebraic Number Theory. Proceedings of Instructional Conference, organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of IMU, University of Sussex, Brighton, pp. 01.9–17.9, 1965, Academic Press, London, New York (1967)

  4. Chipchakov, I.D.: The normality of locally finite associative division algebras over classical fields. Vestn. Mosk. Univ., Ser. I 2, pp. 15–17 (1988) (Russian: English transl. in: Mosc. Univ. Math. Bull. 43 (1988), 2, pp. 18–21)

  5. Chipchakov I.D.: On the classification of central division algebras of linearly bounded degree over global fields and local fields. J. Algebra 160, 342–379 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chipchakov I.D.: Lower bounds and infinity criterion for Brauer p-dimensions of finitely-generated field extensions. C. R. Acad. Buld. Sci. 66, 923–932 (2013)

    MATH  MathSciNet  Google Scholar 

  7. Chipchakov, I.D.: On the behaviour of Brauer p-dimensions under finitely-generated field extensions. J. Algebra 428, 190–204 (2015)

  8. Chipchakov, I.D.: On Brauer p-dimensions and absolute Brauer p-dimensions of Henselian fields. Preprint, arXiv:1207.7120v6 [math.RA], 1 Sept 2014

  9. Draxl, P.K.: Skew fields. Lond. Math. Soc. Lecture Notes, vol. 81, Cambridge University Press IX, Cambridge (1983)

  10. Draxl P.K.: Ostrowski’s theorem for Henselian valued skew fields. J. Reine Angew. Math. 354, 213–218 (1984)

    MATH  MathSciNet  Google Scholar 

  11. Ducos L.: Réalisation régulière explicite des groupes abéliens finis comme groupes de Galois. J. Number Theory 74, 44–55 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Efrat I.: A Hasse principle for function fields over PAC fields. Isr. J. Math. 122, 43–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Efrat, I.: Valuations, Orderings, and Milnor K-Theory. Math. Surveys and Monographs, vol. 124, Am. Math. Soc., Providence, RI, XIII (2006)

  14. Fesenko, I.B., Vostokov, S.V.: Local Fields and Their Extensions. 2nd ed., Transl. Math. Monographs, vol. 121, Am. Math. Soc., Providence, RI (2002)

  15. Fried, M.J., Jarden, M.: Field Arithmetic. 2nd revised and enlarged edn, Ergebnisse der Math. Und ihrer Grenzgebiete, 3. Folge, Bd. 11. Springer, Berlin (2005)

  16. Harbater D., Hartmann J., Krashen D.: Applications of patching to quadratic forms and central simple algebras. Invent. Math. 178, 231–263 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Math., vol. 84. Springer, New York, XIII (1982)

  18. Jacob B., Wadsworth A.: Division algebras over Henselian fields. J. Algebra 128, 126–179 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. De Jong A.J.: The period-index problem for the Brauer group of an algebraic surface. Duke Math. J. 123, 71–94 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kahn B.: Comparison of some field invariants. J. Algebra 232, 485–492 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kollár J.: A conjecture of Ax and degenerations of Fano varieties. Isr. J. Math. 162, 235–251 (2007)

    Article  MATH  Google Scholar 

  22. Lang S.: On quasi algebraic closure. Ann. Math. 55(2), 373–390 (1952)

    Article  MATH  Google Scholar 

  23. Lang, S.: Algebra. Addison-Wesley, Reading (1965)

  24. Lieblich M.: Twisted sheaves and the period-index problem. Compos. Math. 144, 1–31 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Lieblich M.: Period and index in the Brauer group of an arithmetic surface. With an appendix by D. Krashen. J. Reine Angew. Math. 659, 1–41 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lorenz, F., Roquette, P.: The theorem of Grunwald–Wang in the setting of valuation theory. Kuhlmann F.-V. et. al. (eds.) Valuation Theory and Its Applications, vol. II (Saskatoon, SK, 1999), pp. 175–212, Fields Inst. Commun., 33, Am. Math. Soc., Providence, RI, (2003)

  27. Matzri, E.: Symbol length in the Brauer group of a field. Trans. Am. Math. Soc. (to appear)

  28. Mel’nikov O.V., Tavgen’ O.I.: The absolute Galois group of a Henselian field. Dokl. Akad. Nauk BSSR 29, 581–583 (1985)

    MATH  MathSciNet  Google Scholar 

  29. Merkur’ev A.S.: Brauer groups of fields. Commun. Algebra 11, 2611–2624 (1983)

    Article  MATH  Google Scholar 

  30. Merkur’ev, A.S., Suslin, A.A.: K-cohomology of Severi-Brauer varieties and norm residue homomomorphisms. Izv. Akad. Nauk SSSR 46, pp. 1011–1046 (1982). (Russian: English transl. in: Math. USSR Izv. 21, pp. 307–340 (1983))

  31. Morandi P.: The Henselization of a valued division algebra. J. Algebra 122, 232–243 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nakayama T.: Über die direkte Zerlegung eines Divisionsalgebra. Jpn. J. Math. 12, 65–70 (1935)

    Google Scholar 

  33. Parimala, R., Suresh, V.: Period-index and u-invariant questions for function fields over complete discretely valued fields. Invent. Math. 197, 215–235 (2014)

  34. Pierce, R.: Associative Algebras. Graduate Texts in Math., vol. 88, Springer, New York, XII (1982)

  35. Reiner, M.: Maximal Orders. London Math. Soc. Monographs, vol. 5. Academic Press, London (1975). A subsidiary of Harcourt Brace Jovanovich Publishers

  36. Saltman, D.J.: Generic algebras. Brauer groups in ring theory and algebraic geometry. Proc. Antwerp, 1981, Lect. Notes in Math. 917, pp. 96–117 (1982)

  37. Saltman, D.J.: Division algebras over p-adic curves. J. Ramanujan Math. Soc. 12, pp. 25–47 (1997) (correction in: ibid. 13, pp. 125–129 (1998))

  38. Schilling, O.F.G.: The Theory of Valuations. Mathematical Surveys, No. 4, Am. Math. Soc., New York, NY (1950)

  39. Serre, J.-P.: Galois Cohomology. Transl. from the French original by Patrick Ion. Springer, Berlin (1997)

  40. Voevodsky V.: On motivic cohomology with \({\mathbb{Z}/l}\) -coefficients. Ann. Math. 174, 401–438 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Chipchakov.

Additional information

Throughout this paper, we write for brevity “FG-extension(s)” instead of “finitely-generated [field] extension(s)”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipchakov, I.D. On Brauer p-dimensions and index-exponent relations over finitely-generated field extensions. manuscripta math. 148, 485–500 (2015). https://doi.org/10.1007/s00229-015-0745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0745-7

Mathematics Subject Classification

Navigation