Skip to main content
Log in

Hydrolithon spp. (Rhodophyta, Corallinales) overgrow live corals (Cnidaria, Scleractinia) in Yemen

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In Yemen, off the northwestern coast in the Gulf of Aden, the coralline algae Hydrolithon rupestre (Foslie) Penrose 1996 and H. murakoshii Iryu and Matsuda 1996 have been observed to overgrow and kill living Porites lutea Milne-Edwards and Haime, 1860. Similarly, Hydrolithon onkodes (Heydrich) Penrose and Woelkerling 1992 and H. rupestre were observed overgrowing Stylophora pistillata (Esper, 1797). Competitive interactions between P. lutea and H. murakoshii were monitored from 2006 to 2009 at two sites and showed an average linear growth of 8.3 (±1.9 SD) mm year−1 over the coral. The small polyps of S. pistillata and P. lutea combined with putative chemical compounds produced by Hydrolithon spp. are likely to allow the coralline overgrowth. Although corallines can locally kill coral tissues, the CCA/coral interactions do not seem to affect the overall live coral cover at the study sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adey WH (1998) Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J Phycol 34:393–406

    Article  Google Scholar 

  • Adey WH, Vassar JM (1975) Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia 14:55–69

    Article  Google Scholar 

  • Aeby G (1993) Corals in the genus Porites are susceptible to infection by a larval trematode. Coral Reefs 22:216

    Article  Google Scholar 

  • Antonius A (2001) Pneophyllum conicum, a coralline red alga causing reef-death in Mauritius. Coral Reefs 19:418

    Article  Google Scholar 

  • Ballantine DL, Ruiz H (2011) Metapeyssonnelia milleporoides, a new species of coral-killing red alga (Peyssonneliaceae) from Puerto Rico, Caribbean Sea. Bot Mar 54:47–51

    Google Scholar 

  • Benzoni F, Bianchi CN, Morri C (2003) Coral communities of the North-western Gulf of Aden (Yemen): variation in framework building related to environmental factors and biotic conditions. Coral Reefs 22:475–484

    Article  Google Scholar 

  • Benzoni F, Pichon M, Galli P (2010) Pink spots on Porites: not always a coral disease. Coral Reefs 29:153

    Article  Google Scholar 

  • Birrel CL, McCook LJ, Willis BL, Harrington L (2008) Chemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora. Mar Ecol Prog Ser 362:129–137

    Article  Google Scholar 

  • Bishop CD, Huggett MJ, Heyland A, Hodin J, Brandhorst BP (2006) Interspecific variation in metamorphic competence in marine invertebrates: the significance for comparative investigations into the timing of metamorphosis. Integr Comp Biol 46:662–682

    Article  CAS  Google Scholar 

  • Bjork M, Mohammed S, Bjorkland M, Semesi A (1995) Coralline algae, important coral reef builders threatened by pollution. Ambio 24:502–505

    Google Scholar 

  • Bongiorni L, Rinkevich B (2005) The pink-blue spot syndrome in Acropora eurystoma (Eilat, Red Sea): a possible marker of stress? Zoology 108:247–256

    Article  Google Scholar 

  • Bressan G (1974) Rodoficee calcaree dei mari italiani. Boll Soc Adr Sc 59:1–132

    Google Scholar 

  • Buenau KE, Price NN, Nisbet RM (2010) Local interactions drive size dependent space competition between coral and crustose coralline algae. Oikos 120:941–949

    Article  Google Scholar 

  • Bulleri F (2006) Duration of overgrowth affects survival of encrusting coralline algae. Mar Ecol Prog Ser 321:79–85

    Article  Google Scholar 

  • Caragnano A, Colombo F, Rodondi G, Basso D (2009) 3-D distribution of nongeniculate Corallinales: a case study from a reef crest of South Sinai (Red Sea, Egypt). Coral Reefs 28:881–891

    Article  Google Scholar 

  • Chisholm JRM (2003) Primary productivity of reef-building crustose coralline algae. Limnol Oceanogr 48:1376–1387

    Article  Google Scholar 

  • Coles S (1996) Corals of Oman. CYK Publications, Muscat

    Google Scholar 

  • Cribb AG (1983) Marine algae of the southern Great Barrier Reef. Part I. Rhodophyta. ACRS, Brisbane

    Google Scholar 

  • Diaz-Pulido G, McCook LJ (2004) Effects of live coral, epilithic algal communities and substrate type on algal recruitment. Coral Reefs 23:225–233

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Dove S, Berkelmans RWC, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4:e5239

    Article  Google Scholar 

  • Eckrich CE, Engel MS, Peachey RBJ (2010) Crustose, calcareous algal bloom (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 30:131

    Article  Google Scholar 

  • Esper EJC (1797) Fortsetzungen der Pflanzenthiere in Abbildungennach der Natur mit Farben erleuchtet nebst Beschreibungen. Erster Theil, Nürnberg, pp 1–230

    Google Scholar 

  • Fagerström JA (1991) Reef-building guilds and a checklist for determining guild membership. A new approach for study of communities. Coral Reefs 10:47–52

    Article  Google Scholar 

  • Finckh AE (1904) Report on dredging at Funafuti. Section VI. Biology of the reef-forming organisms at Funafuti Atoll. Rep Coral Reef Comm R Soc 125:150

    Google Scholar 

  • Gattuso J-P (1985) Features of depth effects on Stylophora pistillata, an hermatypic coral in the Gulf of Aqaba (Jordan, Red Sea). In: Proceedings of 5th international coral reef congress Tahiti, vol 6, pp 95–100

  • Glynn PW (1993) Monsoonal upwelling and episodic Acanthaster predation as probable controls of coral reef distribution and community structure in Oman, Indian Ocean. Atoll Res Bull 379:1–66

    Article  Google Scholar 

  • Golbuu Y, Richmond RH (2007) Substratum preferences in planula larvae of two species of scleractinian corals, Goniastrea retiformis and Stylaraea punctata. Mar Biol 152:639–644

    Article  Google Scholar 

  • Harrington L, Fabricius K, De’Ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437

    Article  Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    Article  Google Scholar 

  • Hixon MA (1997) The effects of reef fishes on corals and algae. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 230–248

    Chapter  Google Scholar 

  • Iryu Y, Matsuda S (1996) Hydrolithon murakoshii sp. nov. (Corallinaceae, Rhodophyta) from Ishigaki-jima, Ryukyu Islands, Japan. Phycologia 35:528–536

    Article  Google Scholar 

  • Keats DW, Chamberlain YM, Baba M (1997a) Pneophyllum conicum (Dawson) comb. nov. (Rhodophyta, Corallinaceae), a widespread Indo-Pacific non-geniculate coralline alga that overgrows and kills live coral. Bot Mar 40:263–279

    Article  Google Scholar 

  • Keats DW, Knight MA, Pueschel CM (1997b) Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Corallinales) on a coral reef. J Exp Mar Biol Ecol 213:281–293

    Article  Google Scholar 

  • Kemp JM, Benzoni F (1999) Monospecific coral areas on the northern shore of the Gulf of Aden, Yemen. Coral Reefs 18:180

    Article  Google Scholar 

  • Kemp JM, Benzoni F (2000) A preliminary study of coral communities in the northern Gulf of Aden. Fauna Arabia 18:67–86

    Google Scholar 

  • Kiessling W, Flugel E, Golonka J (2002) Phanerozoic reef patterns. SEPM SPECIAL Publications, Tulsa

    Book  Google Scholar 

  • Kikuchi RKP, Leão ZMAN (1997) Rocas (Southwestern Equatorial Atlantic, Brazil): an atoll built primarily by coralline algae. In: Proceedings of 8th international coral reef symposium, vol 1, pp 731–736

  • Littler DS, Littler MM (1999) Epithallus sloughing: a self-cleaning mechanism for coralline algae. Coral Reefs 18:204

    Article  Google Scholar 

  • Littler DS, Littler MM (2003) South Pacific reef plants: a divers’ guide to the plant life of South Pacific coral reefs. Offshore Graphics Inc., Washington, D.C

    Google Scholar 

  • Macintyre IG (1997) Reevaluating the role of crustose coralline algae in the construction of coral reefs. In: Proceedings of 8th international coral reef symposium, vol 1, pp 725–730

  • Maneveldt GW (2005) A global revision of the nongeniculate coralline algal genera Porolithon Foslie (defunct) and Hydrolithon Foslie (Corallinales Rhodophyta). Ph.D. Thesis. Dept. Biodiversity and Conservation Biology, University of the Western Cape

  • McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • Milliman JD (1974) Marine carbonates. In: Milliman JD, Müller G, Förstner U (eds) Recent sedimentary carbonates, part I. Springer, Berlin

    Chapter  Google Scholar 

  • Milne-Edwards H, Haime J (1860) Histoire naturelle des coralliaires ou polypes proprement dits. 3:1–560

  • Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154

    Article  Google Scholar 

  • Nugues MM, Smith GW, Hooidonk RJV, Seabra MI, Bak RPM (2004a) Algal contact as a trigger for coral disease. Ecol Lett 7:919–923

    Article  Google Scholar 

  • Nugues MM, Delvoye L, Bak RPM (2004b) Coral defense against macroalgae: differential effects of mesenterial filaments on the green alga Halimeda opuntia. Mar Ecol Prog Ser 278:103–114

    Article  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure. Principles and selected methods. Termarcarphi Pty Ltd, Melbourne

    Google Scholar 

  • Palmer CV, Roth MS, Gates RD (2009) Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues. Biol Bull 216:68–74

    Article  CAS  Google Scholar 

  • Payri CE (1995) Production carbonatée de quelques algues calcifiées sur un récif corallien de Polynésie française. B Soc Géol Fr 166:77–84

    CAS  Google Scholar 

  • Penrose D (1996) Genus Hydrolithon (Foslie) Foslie 1909: 55. In: Womersley HBS (ed) The marine benthic flora of southern Australia. Rhodophyta. Part IIIB, Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study, Canberra, pp 255–266

    Google Scholar 

  • Penrose D, Woelkerling WJ (1992) A reappraisal of Hydrolithon and its relationship to Spongites (Corallinaceae, Rhodophyta). Phycologia 31:81–88

    Article  Google Scholar 

  • Pichon M, Benzoni F, Chaineau CH, Dutrieux E (2010) Field guide of the hard corals of the southern coast of Yemen. Biotope, Paris

    Google Scholar 

  • Pitlik TJ, Paul VJ (1997) Effects of toughness, calcite level, and chemistry of crustose coralline algae (Rhodophyta, Corallinales) on grazing by the parrotfish Chlorurus sordidus. In: Proceedings of 8th international coral reef symposium vol 1, 701–706

  • Price N (2010) Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163:747–758

    Article  Google Scholar 

  • Pueschel C, Saunders G (2009) Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycologia 48:480–491

    Article  Google Scholar 

  • Ranson G (1955a) Observations sur l’agent essentiel de la dissolution du calcaire sousmarin dans la zone côtière des îles coralliennes de l’archipel des Tuamotu. C r hebd Seanc Acad Sci Paris 240:806–808

    Google Scholar 

  • Ranson G (1955b) Observations sur l’agent essentiel de la dissolution du calcaire dans les regions exondées des îles coralliennes de l’archipel des Tuamotu. C r hebd Seanc Acad Sci Paris 240:1007–1009

    Google Scholar 

  • Ravindran J, Raghukumar C (2006) Pink-line syndrome, a physiological crisis in the scleractinian coral Porites lutea. Mar Biol 149:347–356

    Article  CAS  Google Scholar 

  • Riegl B, Piller WE (2000) Reefs and coral carpets in the northern Red Sea as models for organism–environment feedback in coral communities and its reflection in growth fabric. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platforms systems: components and interactions. Geol Soc Lond Spec Publ, vol 178, pp 71–88

  • Sheppard C, Price A, Roberts C (1992) Marine ecology of the Arabian region. Patterns and processes in extreme tropical environments. Academic Press, London

    Google Scholar 

  • Sorokin YI (1993) Coral reef ecology. Springer, Heidelberg

    Book  Google Scholar 

  • Stefani F, Benzoni F, Yang S-Y, Pichon M, Galli P, Chen CA (2011) Comparison of morphological and genetic analyses reveal cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs (in press)

  • Steneck RS (1997) Crustose corallines, other algal functional groups, herbivores and sediments: complex interactions along reef productivity gradients. In: Proc 8th Int Coral Reef Symp 1:695–700

  • Steneck RS, Testa V (1997) Are calcareous algae important to reefs today or in the past? Symposium summary. In: Proceedings of 8th International coral reef symposium, vol 1, pp 685–688

  • van den Hoek C (1969) Algal vegetation-types along the open coasts of Curaçao, Netherlands Antilles I and II. Proc K ned Akad Wet 72:537–577

    Google Scholar 

  • van Woesik R (1998) Lesion healing on massive Porites spp. corals. Mar Ecol Prog Ser 164:213–222

    Article  Google Scholar 

  • Verlaque M, Ballesteros E, Antonius A (2000) Metapeyssonnelia corallepida sp. nov. (Peyssonneliaceae, Rhodophyta), an Atlantic encrusting red alga overgrowing corals. Bot Mar 43:191–200

    Google Scholar 

  • Vermeij MJA, Sandin SA (2008) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004

    Article  Google Scholar 

  • Veron JEN, Pichon M (1976) Scleractinia of Eastern Australia. vol 1: Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science Monograph Series, Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Pichon M (1982) Scleractinia of Eastern Australia. vol 5: Part IV. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science Monograph Series, Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Wilcox D, Dove B, McDavid D, Greer D (1986–2001) UTHSCSA image tool for windows. San Antonio: University of Texas Health Science Centre, http://www.ddsdx.uthscsa.edu/dig/itdesc.html. Accessed 8 February 2011

  • Williams EA, Craigie A, Yeates A, Degnan SM (2008) Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina. Biol Bull 215:98–107

    Article  Google Scholar 

  • Willis B, Page C, Dinsdale E (2004) Coral disease on the Great Barrier Reef. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 69–104

    Chapter  Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, NewYork

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Robert Hirst and Yemen LNG, Claude Chaineu and Total E&P, for allowing fieldwork and sampling, and to Eric Dutrieux and Creocean for logistic and organization support. We thank S. Basheen (Professional Divers Yemen) help in different parts of the field work. We are very grateful to the Editor and to three anonymous reviewers for their constructive criticism and their help to improve the manuscript and to Jane Hayward Cantarelli for English editing. We wish to thank M. Pichon for fruitful discussion and Paolo Gentile for his help with specimen preparation and SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Basso.

Additional information

Communicated by J. P. Grassle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzoni, F., Basso, D., Caragnano, A. et al. Hydrolithon spp. (Rhodophyta, Corallinales) overgrow live corals (Cnidaria, Scleractinia) in Yemen. Mar Biol 158, 2419–2428 (2011). https://doi.org/10.1007/s00227-011-1743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1743-2

Keywords

Navigation