Marine Biology

, Volume 158, Issue 1, pp 159–179 | Cite as

Benthic foraminiferal distribution on the southeastern Brazilian shelf and upper slope

  • Leticia BuroneEmail author
  • Silvia Helena de Mello e Sousa
  • Michel Michaelovitch de Mahiques
  • Paulo Valente
  • Aurea Ciotti
  • Cíntia Yamashita
Original Paper


Foraminiferal data were obtained from 66 samples of box cores on the southeastern Brazilian upper margin (between 23.8°–25.9°S and 42.8°–46.13°W) to evaluate the benthic foraminiferal fauna distribution and its relation to some selected abiotic parameters. We focused on areas with different primary production regimes on the southern Brazilian margin, which is generally considered as an oligotrophic region. The total density (D), richness (R), mean diversity (\( \overline{{H^{\prime } }} \)), average living depth (ALD X ) and percentages of specimens of different microhabitats (epifauna, shallow infauna, intermediate infauna and deep infauna) were analyzed. The dominant species identified were Uvigerina spp., Globocassidulina subglobosa, Bulimina marginata, Adercotryma wrighti, Islandiella norcrossi, Rhizammina spp. and Brizalina sp.. We also established a set of mathematical functions for analyzing the vertical foraminiferal distribution patterns, providing a quantitative tool that allows correlating the microfaunal density distributions with abiotic factors. In general, the cores that fit with pure exponential decaying functions were related to the oligotrophic conditions prevalent on the Brazilian margin and to the flow of the Brazilian Current (BC). Different foraminiferal responses were identified in cores located in higher productivity zones, such as the northern and the southern region of the study area, where high percentages of infauna were encountered in these cores, and the functions used to fit these profiles differ appreciably from a pure exponential function, as a response of the significant living fauna in deeper layers of the sediment. One of the main factors supporting the different foraminiferal assemblage responses may be related to the differences in primary productivity of the water column and, consequently, in the estimated carbon flux to the sea floor. Nevertheless, also bottom water velocities, substrate type and water depth need to be considered.


Foraminifera Benthic Foraminifera Rose Bengal Foraminiferal Assemblage Brazilian Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazilian agency) via a post-doctoral fellowship (Proc. No. 06/59947-3) provided to L.B and via grant No. 03/10740-0. We are grateful to Joachim Schönfeld for the helpful comments and suggestions. The authors also wish to thank Mr. Daniel P. Alves and Mr. Edilson Faria for their help in the laboratory with the sedimentological analyses. We also thank Mrs. Fabiana Barbosa for the calculation of the primary productivity values.


  1. Altenbach AV, Pflaumann U, Schiebel R, Thies A, Timm S, Trauth M (1999) Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon. J Foram Res 29(3):173–185Google Scholar
  2. Alve AV, Bernhard JM (1995) Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar Ecol Prog Ser 116:137–151CrossRefGoogle Scholar
  3. Barbosa VP (1998) Foraminíferos Bentoˆnicos Quaterná rios do Talude Continental da Bacia de Santos: Sistema′ tica, Paleobatimetria e Paleoecologia. MSc thesis. Instituto de Geocieˆncias, Universidade Federal do Rio Grande do Sul, 427 ppGoogle Scholar
  4. Barmawidjaja DM, Jorissen FJ, Puskaric S, Van der Zwaan GF (1992) Microhabitat selection by benthic foraminifera in the northern Adriatic Sea. J Foram Res 22:297–317CrossRefGoogle Scholar
  5. Berger WH, Wefer G (1990) Export production: seasonality and intermittency, and paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol (Global and Planetary Ghange Section) 89:245–254CrossRefGoogle Scholar
  6. Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368CrossRefGoogle Scholar
  7. Bernhard JM (1986) Characteristic assemblages and morphologies of benthic anoxic, organic-rich deposits; Jurassic through Holocene. J Foram Res 16(3):207–215CrossRefGoogle Scholar
  8. Betzer PR, Showers WJ, Laws EA, Winn CD, Di Tullio GR, Kroopnick PP (1984) Primary productivity and particles fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res 31:1–11CrossRefGoogle Scholar
  9. Boltovskoy E, Giussani G, Watanabe S, Wright R (1980) Atlas of benthic shelf foraminífera of the southwest Atlantic. Dr. W. Junk by Publisher, The Hague, 147 p, 17 maps, 36plsGoogle Scholar
  10. Brandini FP (2006) Hidrografia e produção biológica na região sudeste-sul do Brasil no contexto do programa Revizee. In: Rossi-Wongtschowski CLDB, Madureira LS-P (eds) O Ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil. EDUSP, São Paulo, pp 459–466Google Scholar
  11. Bray JR, Curtis JT (1957) Na ordination of the upland forest communities in southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  12. Burone L, Pires-Vanin AMS (2006) Foraminiferal assemblages in the Ubatuba Bay, Southeastern Brazilian coast. Sci Mar 70(2):203–217CrossRefGoogle Scholar
  13. Burone L, Venturini N, Sprechmann P, Valente P, Muníz P (2006) Foraminiferal responses to polluted sediments in the Montevideo coastal zone, Uruguay. Mar Pollut Bull 52:61–73CrossRefGoogle Scholar
  14. Burone L, Valente P, Pires-Vanin AMS, Sousa SHM, Mahiques MM, Braga E (2007) Benthic foraminiferal variability on a monthly scale in a subtropical bay moderately affected by urban sewage. Sci Mar 71(4):775–792CrossRefGoogle Scholar
  15. Buzas MA (1993) Colonization rate of foraminífera in the Indian River, Florida. J Foram Res 23:156–161CrossRefGoogle Scholar
  16. Campos EJD, Velhote D, Silveira ICA (2000) Shelf break upwelling driven by Brazil Current cyclonic meanders. Geophys Res Lett 27(6):751–754CrossRefGoogle Scholar
  17. Carbonel CAAH, Valentin JL (1999) Numerical modeling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio (Brazil). Ecol Model 116:135–148CrossRefGoogle Scholar
  18. Carr ME, Friedrichs MAM, Schmeltz M, Aité MN, Antoine D, Arrigo KR, Asanuma I, Aumont O, Barber R, Behrenfeld M, Bidigare R, Buitenhuis E, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Groom S, Hoepffner N, Hishisaka J, Kameda T, Le Quéré C, Lohrenz S, Marra J, Mélin F, Moore K, Morel A, Reddy T, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K, Yamanaka Y (2005) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res II 53:741–770CrossRefGoogle Scholar
  19. Castro Filho BM, Miranda LB (1988) Physical oceanography of the Western Atlantic Continental Shelf located between 4°N and 34°S. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, pp 209–251Google Scholar
  20. Castro Filho BM, Miranda LB, Miyao SY (1987) Hydrographic conditions on the continental shelf offshore off Ubatuba: seasonal and middle scale variations. Bol Inst Oceanogr São Paulo 35:135–151Google Scholar
  21. Corliss BH (1985) Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314(4):435–438CrossRefGoogle Scholar
  22. Corliss BH (1991) Morphology and microhabitat preferences of benthic foraminífera from the northwest Atlantic Ocean. Mar Micropaleontol 17:195–236CrossRefGoogle Scholar
  23. Corliss BH, Emerson S (1990) Distribution of Rose Bengal stained deep-sea benthic foraminifera from the Nova Scotia continental margin and Gulf of Maine. Deep-Sea Res 37:381–400CrossRefGoogle Scholar
  24. Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2:9–31CrossRefGoogle Scholar
  25. Duchemin G, Fontanier C, Jorissen FJ, Barras Ch, Griveaud C (2007) Living small-sized (63–150 μm) foraminifera from mid-shelf to mid-slope environments in the Bay of Biscay. J Foram Res 37(1):12–32CrossRefGoogle Scholar
  26. Fontanier C, Jorissen FJ, Licari L, Alexandre A, Anschutz P, Carbonel P (2002) Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Res I 49(4):751–785CrossRefGoogle Scholar
  27. Gaeta SA, Brandini FP (2006) Produção primaria do Fitoplâncton na região entre o Cabo de Santo Tomé (RJ) r o Chuí (RS). In: Rossi-Wongtschowski CLDB, Madureira LS-P (eds) O Ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil. EDUSP, São Paulo, pp 219–264Google Scholar
  28. Gaeta SA, Brino OL, Susini-Ribeiro SM (1994) Distributions of nitrate, chlorophyll and primary productivity in the southwestern region of the South Atlantic during Summer”. In: Abstracts of Southwestern Atlantic Physical Oceanography Workshop. USP/FAPESP, IOUSP, pp 57–60Google Scholar
  29. Gooday A (1986) Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res 33(10):1345–1373CrossRefGoogle Scholar
  30. Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70–73CrossRefGoogle Scholar
  31. Gooday AJ (1993) Deep-sea benthic foraminiferal species which exploit phytodetritus: Characteristic features and controls on distribution. Mar Microplaeontol 22:187–205CrossRefGoogle Scholar
  32. Gooday AJ, Rathburn AE (1999) Temporal variability in living deep-sea foraminifera: a review. Earth Sci Rev 46:187–212CrossRefGoogle Scholar
  33. Jones RW (1994) The challenger foramifera. Oxford Science Publications. The Natural History Museum. Oxford University Press, London 149 ppGoogle Scholar
  34. Jorissen FJ (1999) Benthic foraminiferal microhabitats below the sediment-water interface. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer, Dordrecht, pp 161–179Google Scholar
  35. Jorissen FJ, Stigter HC, de Widmark JGV (1995) A conceptual model explaining benthic foraminiferal habitats. Mar Micropaleontol 26:3–15CrossRefGoogle Scholar
  36. Jorissen FJ, Fontanier C, Thomas E (2007) Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in late cenozoic paleoceanography. Elsevier, Amsterdam, pp 263–325CrossRefGoogle Scholar
  37. Kaiho K (1991) Global changes of paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeogr Palaeoclimatol Palaecol 83:65–85CrossRefGoogle Scholar
  38. Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved-oxigen levels in the modern ocean. Geology 22:719–722CrossRefGoogle Scholar
  39. Kitazato H, Shirayama Y, Nakatsuka T, Fujiwara S, Shimanaga M, Kato Y, Okada Y, Kanda J, Yamaoka A, Masukawa T, Suzuki K (2000) Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal assemblages in Sagami Bay, Japan: preliminary results from ‘Project Sagami 1996–1999'. Mar Micropaleontol 40(3):135–149CrossRefGoogle Scholar
  40. Kruskal JB, Wish M (1978) Multidimensional scaling. California Sage, Beverly HillsGoogle Scholar
  41. Linke P, Lutze GF (1993) Microhabitat preferences of benthic foraminifera—a static concept or a dynamic adaptation to optimize food acquisition? Mar Micropaleontol 20:215–234CrossRefGoogle Scholar
  42. Loeblich AR Jr, Tappan H (1988) Foraminiferal genera and their classification—PLATES, vol. 2. Van Nostrand Reinhold, New York, p 970Google Scholar
  43. Loubere P (1991) Deep-sea benthic foraminiferal assemblage response to a surface ocean productivity gradient: a test. Paleoceanography 6:193–204CrossRefGoogle Scholar
  44. Loubere P, Fariduddin M (1999a) Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on time scales from centuries to millennia. Global Biogeochem Cycles 13:115–133CrossRefGoogle Scholar
  45. Loubere P, Fariduddin M (1999b) Benthic Foraminifera and the flux of organic carbon to the seabed. In: Sen Gupta BG (ed) Modern foraminifera. Kluwer, Netherlands, pp 182–199Google Scholar
  46. Lutze GF, Coulbourn WT (1984) Recent benthic foraminifera from the continental margin off northwest Africa: community, structure and distribution. Mar Micropaleontol 8:361–401CrossRefGoogle Scholar
  47. Lutze GF, Thiel H (1989) Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. J Foram Res 19:153–158CrossRefGoogle Scholar
  48. Mackensen A, Douglas RG (1989) Down-core distribution of live and dead deep -water benthic foraminifera in box cores from the Weddell Sea and the California continental borderland. Deep-Sea Res 36(6):879–900CrossRefGoogle Scholar
  49. Mackensen A, Schmiedl G, Harloff J, Giese M (1995) Deep-sea foraminifera in the South Atlantic Ocean: ecology and assemblage generation. Micropaleontology 41(4):342–358CrossRefGoogle Scholar
  50. Mahiques MM, Mishima Y, Rodrigues M (1999) Characteristics of the sedimentary organic matter on the inner and middle continental shelf between Guanabara Bay and São Francisco do Sul, south-eastern Brazilian margin. Cont Shelf Res 19:775–798CrossRefGoogle Scholar
  51. Mahiques MM, Silveira ICA, Sousa SHM, Rodrigues M (2002) Post-LGM sedimentation on the outer shelf/upper slope of the northernmost part of the São Paulo Bight, south-eastern Brazil. Mar Geol 181:387–400CrossRefGoogle Scholar
  52. Mahiques MM, Tessler MG, Ciotti AM, Silveira ICA, Sousa SHM, Figueira RCL, Tassinari CCG, Furtado VV, Passos RF (2004) Hydrodinamically-driven patterns of recent sedimentation in the shelf and upper slope off southeast Brazil. Cont Shelf Res 24:1685–1697CrossRefGoogle Scholar
  53. Mahiques MM, Bícego MC, Silveira ICA, Sousa SHM, Lourenço RA, Fukumoto MM (2005) Modern sedimentation in the Cabo Frio upwelling system, Southeastern Brazilian shelf. An Academ Brasil Ciên 77:535–548Google Scholar
  54. Mahiques MM, Tassinari CCG, Marcolini S, Violante R, Figueira RCL, Silveira ICA, Burone L, Sousa SHM (2008) Nd and Pb isotope signatures on the Southeastern South American Upper Margin: implications for sediment transport and source rocks. Mar Geol 250:51–56CrossRefGoogle Scholar
  55. Mahiques MM, Wainer IEKC, Burone L, Sousa SHM, Silveira ICA, Bícego MC, Alves DP, Hammer O (2009) A high-resolution Holocene record on the Southern Brazilian shelf: paleoenvironmental implications. Quat Inter 206:52–61CrossRefGoogle Scholar
  56. Martins V, Dubert J, Jouanneau J-M, Weber O, da Silva EF, Patinha C, Alverinho Dias JM, Rocha F (2007) A multiproxy approach of the Holocene evolution of shelf-slope circulation on the NW Iberian Continental Shelf. Mar Geol 239:1–18CrossRefGoogle Scholar
  57. Matsuura Y (1986) Contribuição ao estudo da estrutura oceanográfica da região sudeste entre Cabo Frio (RJ) e Cabo de Santa Marta Grande (SC). Ciencia e Cultura 38(8):1439–1450Google Scholar
  58. Moodley L, Van der Zwaan GJ, Rutten GMW (1998) Subsurface activity of benthic foraminifera in relation to porewater oxygen content: laboratory experiments. Mar Micropaleontol 34:91–106CrossRefGoogle Scholar
  59. Murray JW (1991) Ecology and paleoecology of benthic foraminifera. Longman, HarlowGoogle Scholar
  60. Murray JW (2003) Foraminiferal assemblage formation in depositional sinks on the continental shelf margin west of Scotland. J Foram Res 33:101–121CrossRefGoogle Scholar
  61. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. Nagai RH, Sousa SHM, Burone L, Mahiques MM (2009) Paleoproductivity changes during the Holocene in the inner shelf of Cabo Frio, southeastern Brazilian continental margin: Benthic foraminífera and sedimentological proxies. Quat Int 206:62–71CrossRefGoogle Scholar
  63. Ohga T, Kitazato H (1997) Seasonal changes in bathyal foraminiferal assemblages in response to the flux of organic matter (Sagami Bay, Japan): Terra Nova 9(1):33–37Google Scholar
  64. Pielou EC (1975) Ecological diversity. Jhon Wiley, New York, p 165Google Scholar
  65. Piola AR, Campos EJD, Möller O, Charo M, Martínez C (2000) Subtropical shelf front off eastern South America. J Geophys Res 105(3):6565–6578CrossRefGoogle Scholar
  66. Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724CrossRefGoogle Scholar
  67. Rodrigues RR, Lorenzzetti JA (2001) A numerical study of the effects of bottom topography and coastline geometry on the Southeast Brazilian coastal upwelling. Cont Shelf Res 21:371–394CrossRefGoogle Scholar
  68. Schmiedl G, de Bovée F, Buscail R, Charrière B, Hemleben C, Medernach L, Picon P (2000) Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Mar Micropaleontol 40(3):167–218CrossRefGoogle Scholar
  69. Schönfeld J (1997) The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin. Mar Micropaleontol 29:211–236CrossRefGoogle Scholar
  70. Schönfeld J (2001) Benthic foraminifera and pore-water oxygen profiles: a re-assessment of species boundary conditions at the western Iberian margin. J Foraminifer Res 31(2):86–107CrossRefGoogle Scholar
  71. Schönfeld J (2002a) A new benthic foraminiferal proxy for near-bottom current velocities in the Gulf of Cadiz, northeastern Atlantic Ocean. Deep-Sea Res I 49:1853–1875CrossRefGoogle Scholar
  72. Schönfeld J (2002b) Recent benthic foraminiferal assemblages in deep high-energy environments from the Gulf of Cadiz (Spain). Micropaleontology 44:141–162CrossRefGoogle Scholar
  73. Silveira ICA, Schmidt ACK, Campos EJD, Godoi SS, Ikeda Y (2000) A corrente do Brasil ao Largo da Costa Leste Brasileira. Rev Bras Oceanogr 48(2):171–183Google Scholar
  74. Sjoerdsma PG, van der Zwaan GJ (1992) Simulating the effect of changing organic flux and oxygen content on the distribution of benthic foraminifera. Mar Micropaleontol 19:163–180CrossRefGoogle Scholar
  75. Sousa SHM, Passos RF, Fukomoto M, Silveira ICA, Figueira RCL, Koutsoukos EAM, Mahiques MM, Rezende CE (2006) Mid-lower bathyal benthic foraminifera of the Campos Basin, Southeastern Brazilian margin: Biotopes and controlling ecological factors. Mar Micropaleontol 61:40–57CrossRefGoogle Scholar
  76. Stein R (1991) Accumulation of organic carbon in marine sediments. Results from the Deep Sea Drilling Project/Ocean Drilling Program. Lecture Notes in: Earth Sciences, vol. 34. Springer, Berlin 217 pGoogle Scholar
  77. Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288:260–263CrossRefGoogle Scholar
  78. Suguio K (1973) Introdução à sedimentologia. Edgar Blücher/Editora da Universidade de São Paulo, São Paulo, p 317Google Scholar
  79. Sumida PYG, Yoshinaga MY, Ciotti AM, Gaeta A (2005) Benthic response to upwelling events off SE Brazilian coast. Mar Ecol Prog Ser 291:35–42CrossRefGoogle Scholar
  80. Tissot B, Deroo G, Herbin JP (1979) Organic matter in cretaceous sediments of the North Atlantic: contribution to sedimentology and paleoceanography. In: Talwani M et al. (eds) Deep Drilling results in the Atlantic Ocean: continental margin and paleonvironment, Amer. Geophys. Union, M. Ewing Ser. vol 3. pp 362–374 Google Scholar
  81. Walton WR (1952) Techniques for recognition of living foraminifera. Contrib Cushman Found J Foram Res 3:56–60Google Scholar
  82. Wieking G, Kröncke I (2005) Is benthic trophic structure affected by food quality? The Dogger Bank example. Mar Biol 146:387–400CrossRefGoogle Scholar
  83. Zembruscki SG (1979) Geomorphology of the southern Brazilian continental margin and adjacent oceanic basins. In: Chaves HAF (ed) Geomorphology of the Brazilian Continental Margin and Adjacent Oceanic Basins (Final report). REMAC Project Series, no. 7, Rio de Janeiro, Petrobrás, pp 129–177Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Leticia Burone
    • 1
    • 4
    Email author
  • Silvia Helena de Mello e Sousa
    • 1
  • Michel Michaelovitch de Mahiques
    • 1
  • Paulo Valente
    • 2
  • Aurea Ciotti
    • 3
  • Cíntia Yamashita
    • 1
  1. 1.Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto de Física, Facultad de IngenieríaMontevideoUruguay
  3. 3.UNESP Campus do Litoral PaulistaSão VicenteBrazil
  4. 4.Facultad de Ciencias, Sección OceanologíaMontevideoUruguay

Personalised recommendations