Marine Biology

, Volume 156, Issue 6, pp 1289–1296 | Cite as

Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence

  • Saskia Van GaeverEmail author
  • Leon Moodley
  • Francesca Pasotti
  • Marco Houtekamer
  • Jack J. Middelburg
  • Roberto Danovaro
  • Ann Vanreusel
Original Paper


We report the results of a detailed investigation on the trophoecology of two dominant meiofaunal species at the Håkon Mosby Mud Volcano (HMMV), a deep-sea cold methane-venting seep. Analyses of fatty acids (FAs) and their stable carbon isotopes were used to determine the importance of chemosynthetic nutritional pathways for the dominant copepod species (morphologically very similar to Tisbe wilsoni) inhabiting the volcano’s centre and the abundant nematode Halomonhystera disjuncta from the surrounding microbial mats. The strong dominance of bacterial biomarkers (16:1ω7c, 18:1ω7c and 16:1ω8c) coupled with their individual light carbon isotopes signatures (δ13C ranging from −52 to −81‰) and the lack of symbiotic relationships with prokaryotes (as revealed by molecular analyses and fluorescent in situ hybridisation) indicated that chemosynthetically derived carbon constitutes the main diet of both species. However, the copepod showed a stronger reliance on the utilisation of methanotrophic bacteria and contained polyunsaturated FAs of bacterial origin (20:5ω3 and 22:6ω3 with isotope signatures δ13C < −80‰). Instead, the FA profiles of H. disjuncta suggested that sulphide-oxidising bacteria constituted the main diet of this nematode. Therefore, HMMV can be regarded as a persistent deep-sea cold seep, allowing a chemosynthesis-based trophic specialisation by the dominant meiofaunal species inhabiting its sediments. The present investigation, through the determination of the fatty acid profiles, provides the first evidence for trophic specialisation of meiofauna associated with sub-habitats within a cold seep.


Meiofauna Cold Seep Carbon Isotope Signature Trophic Specialisation Compound Specific Stable Isotope Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank IFREMER (France) for providing sampling facilities on board of the RV “PourquoiPas?”, as well as the captain, crew and chief scientist, Hervé Nouzé, for their efforts during the VICKING campaign in 2006. We express our sincere gratitude to Lennart van IJzerloo, Ronald Rutgers and Pieter van Rijswijk for assistance with chemical analysis and to Massimiliano Molari, Elena Manini and Gian Marco Luna for support with the molecular analyses. We are also indebted to Prof. Dr. Gaetan Borgonie and Myriam Claeys for the transmission electron microscopy work on the nematodes. This research was supported by the GOA fund from Ghent University, the 6th FP HERMES, the FWO project “Cold Seeps” nr. G034607, MARBEF (Network of Excellence), and the Netherlands Organisation of Scientific Research. This publication is contribution number MPS-09004 of MarBEF (Marine Biodiversity and Ecosystem Functioning).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

227_2009_1170_MOESM1_ESM.pdf (13 kb)
Protocol FISH and CARD-FISH (PDF 12 kb)


  1. Abrajano TA, Murphy DE, Fang J, Comet P, Brooks JM (1994) 13C/12C ratios of individual fatty acids of marine mytilids with or without bacterial symbionts. Org Geochem 21:611–617. doi: CrossRefGoogle Scholar
  2. Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cell without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  3. Bernhard C, Fenchel T (1995) Mats of colourless sulphur bacteria. II. Structure, composition of biota and successional patterns. Mar Ecol Prog Ser 128:171–179. doi: CrossRefGoogle Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  5. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95. doi: CrossRefGoogle Scholar
  6. Canuel EA, Cloern JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources of organic-matter and its incorporation into the food webs of San-Francisco Bay. Limnol Oceanogr 40:67–81CrossRefGoogle Scholar
  7. Cardigos F, Colaço A, Dando PR, Avilla SP, Sarradin P-M, Tempera F, Conceição P, Pascoal A, Serrão Santos R (2005) Shallow water hydrothermal vent field fluids and communities of the D. João de Castro seamount (Azores). Chem Geol 224:153–168. doi: CrossRefGoogle Scholar
  8. Conway N, Capuzzo JM (1991) Incorporation and utilization of bacterial lipids in the Solemya–velum symbiosis. Mar Biol (Berl) 108:277–291. doi: CrossRefGoogle Scholar
  9. Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340. doi: CrossRefGoogle Scholar
  10. de Beer D, Sauter E, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnol Oceanogr 51:1315–1331CrossRefGoogle Scholar
  11. de Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC (2008) Tracing C-13-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM feeding. Limnol Oceanogr 53:1376–1386CrossRefGoogle Scholar
  12. Delong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737PubMedPubMedCentralGoogle Scholar
  13. Dijkman NA, Kromkamp JC (2006) Photosynthetic characteristics of the phytoplankton in the Scheldt estuary: community and single-cell fluorescence measurements. Eur J Phycol 41:425–434. doi: CrossRefGoogle Scholar
  14. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soils nematode identification. Mol Ecol 11:839–850. doi: CrossRefGoogle Scholar
  15. Hewson I, Fuhrman JA (2004) Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microbiol 70:3425–3433. doi: CrossRefGoogle Scholar
  16. Jerosch K, Schlüter M, Foucher J-P, Allais AG, Klages M, Edy C (2007) Spatial distribution of mud flows, chemoautotrophic communities, and biogeochemical habitats at Håkon Mosby Mud Volcano. Mar Geol 243:1–17. doi: CrossRefGoogle Scholar
  17. Kharlamenko VI, Zhukova NV, Khotimchenko SV, Svetashev VI, Kamenev GM (1995) Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar Ecol Prog Ser 120:231–241. doi: CrossRefGoogle Scholar
  18. Kiyashko SI, Imbs AB, Narita T, Svetashev VI, Wada E (2004) Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria. Comp Biochem Physiol B 139:705–711. doi: CrossRefGoogle Scholar
  19. Lein A, Vogt P, Crane K, Egorov A, Ivanov M (1999) Chemical and isotopic evidence for the nature of the fluid in CH4-containing sediments of the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362Google Scholar
  20. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46Google Scholar
  21. Levin LA, Mendoza GF (2007) Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) margin and the Gulf of Mexico (Florida escarpment). Mar Ecol Evol Persp 28:131–151CrossRefGoogle Scholar
  22. Levin LA, Michener R (2002) Isotopic evidence of chemosynthetic-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnol Oceanogr 47:1336–1345CrossRefGoogle Scholar
  23. Levin LA, James DW, Martin CM, Rathburn AE, Harris LH, Michener RM (2000) Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Mar Ecol Prog Ser 208:21–39. doi: CrossRefGoogle Scholar
  24. Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254. doi: CrossRefGoogle Scholar
  25. MacAvoy SE, Macko SA, Joye SB (2002) Fatty acid carbon isotope signatures in chemosynthetic mussels and tube worms from Gulf of Mexico hydrocarbon seep communities. Chem Geol 185:1–8. doi: CrossRefGoogle Scholar
  26. Masood A, Stark KD, Salem N (2005) A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 46:2299–2305. doi: CrossRefGoogle Scholar
  27. Nichols DS (2003) Prokaryotes and the input of polyunsatured fatty acids to the marine food web. FEMS Microbiol Lett 219:1–7. doi: CrossRefGoogle Scholar
  28. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher J-P, Boetius A (2006) Novel microbial communities of the Håkon Mosby mud volcano and their role as a methane sink. Nature 443:854–858. doi: CrossRefGoogle Scholar
  29. Olu K, Lance S, Sibuet M, Hendry P, Fiala-Dedioni A, Dinet A (1997) Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados Accretionary Prism. Deep Sea Res Part I Oceanogr Res Pap 44:811–841. doi: CrossRefGoogle Scholar
  30. Parrish CC, Abrajano TA, Budge SM, Helleur RJ, Hudson ED, Pulchan K, Ramos C (2000) Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In: Wangersky P (ed) The handbook of environmental chemistry, vol 5, D. Marine chemistry. Springer, Heidelberg, pp 193–223Google Scholar
  31. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101. doi: CrossRefGoogle Scholar
  32. Phleger CF, Nelson MM, Groce AK, Cary SC, Coyne KJ, Nichols PD (2005) Lipid composition of deep-sea hydrothermal vent tube worm Riftia packyptila, crabs Munidopis subsquatnosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comp Biochem Physiol B 141:196–210. doi: CrossRefGoogle Scholar
  33. Pimenov NV, Savvichev AV, Rusanov II, Lein AY, Ivanov MV (2000) Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic. Microbiology 69:709–720. doi: CrossRefGoogle Scholar
  34. Pond DW, Segonzac M, Bell MV, Dixon DR, Fallick AE, Sargent JR (1997) Lipid and lipid carbon stable isotope composition of the hydrothermal vent shrimp Mirocaris fortunata: evidence for nutritional dependence on photosynthetically fixed carbon. Mar Ecol Prog Ser 157:221–231. doi: CrossRefGoogle Scholar
  35. Pranal V, FialaMedioni A, Guezennec J (1996) Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the west Pacific. Mar Ecol Prog Ser 142:175–184. doi: CrossRefGoogle Scholar
  36. Robinson JJ, Cavanaugh CM (1995) Expression of form I and II Ribulose-1.5-biphosphate carboxylase/oxygenase (Rubisco) in chemoautotrophic symbioses: implications for the interpretation of stable isotope ratios. Limnol Oceanogr 40:1496–1502CrossRefGoogle Scholar
  37. Saito H, Osako K (2007) Confirmation of a new food chain utilizing geothermal energy: unusual fatty acids of a deep-sea bivalve, Calyptogena phaseoliformis. Limnol Oceanogr 52:1910–1918CrossRefGoogle Scholar
  38. Salvadó H, Palomo A, Mas M, Puigagut J, r Gracia M (2004) Dynamics of nematodes in a high organic loading rotating biological contactors. Water Res 38:2571–2578. doi: CrossRefGoogle Scholar
  39. Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. Trends Microbiol 13:439–448. doi: CrossRefGoogle Scholar
  40. Sudhaus W, Rehfeld K (1990) Diplogaster coprophilus n. sp. and D. affinis n. sp. (Nematoda, Rhabditida) from cow pats and related species, with notes on distribution, ecology and phylogeny. Rev Nematologie 13:51–65Google Scholar
  41. Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campylocercoides: a result of internal sulphur formation? Mar Ecol Prog Ser 193:251–259. doi: CrossRefGoogle Scholar
  42. Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 43:383–402. doi: CrossRefGoogle Scholar
  43. Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick KE, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno JL, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemo synthetically based ecosystem. Deep Sea Res Part I Oceanogr Res Pap 50:281–300. doi: CrossRefGoogle Scholar
  44. Van Gaever S, Moodley L, de Beer D, Vanreusel A (2006) Meiobenthos at the Arctic Håkon Mosby Mud Volcano, with a parental-caring nematode thriving in sulphide-rich sediments. Mar Ecol Prog Ser 321:143–155. doi: CrossRefGoogle Scholar
  45. Vandekerckhove TTM, Coomans A, Cornelis K, Baert P, Gillis M (2002) Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl Environ Microbiol 68:3121–3125. doi: CrossRefGoogle Scholar
  46. Volkman JK (2006) Lipid biomarkers for marine organic matter. In: Volkman JK (ed) The handbook of environmental chemistry, vol 2, N. Springer, Heidelberg, pp 27–70Google Scholar
  47. Willems M, Houthoofd W, Claeys M, Couvreur M, Van Driessche R, Adriaens D, Jacobsen K, Borgonie G (2005) Unusual intestinal lamellae in the nematode Rhabditophanes sp. KR3021 (Nematoda: Alloinematidae). J Morphol 264:223–232. doi: CrossRefGoogle Scholar
  48. Woombs M, Laybourn-Parry J (1986) The role of nematodes in low rate percolating filter sewage treatment works. Water Res 20:781–787. doi: CrossRefGoogle Scholar
  49. Zhang CL, Huang Z, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarker and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112. doi: CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Saskia Van Gaever
    • 1
    Email author
  • Leon Moodley
    • 2
  • Francesca Pasotti
    • 3
  • Marco Houtekamer
    • 2
  • Jack J. Middelburg
    • 2
  • Roberto Danovaro
    • 3
  • Ann Vanreusel
    • 1
  1. 1.Marine Biology Section, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Center for Estuarine and Marine Ecology Netherlands Institute of Ecology (NIOO-KNAW)YersekeThe Netherlands
  3. 3.Dipartimento Scienze del MareUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations