Advertisement

Marine Biology

, Volume 153, Issue 6, pp 1087–1101 | Cite as

Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds

  • S. Como
  • P. MagniEmail author
  • M. Baroli
  • D. Casu
  • G. De Falco
  • A. Floris
Research Article

Abstract

We investigated macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and Leaf litter beds within a coastal area of the Gulf of Oristano in proximity of the Cabras lagoon (western Sardinia, Italy). A total of 124 taxa were found, of which 116 were identified at the species level. They were analyzed based on both taxonomic and substrate affinity classification. Presence/absence analysis revealed that P. oceanica, C. nodosa and Leaf litter were all characterized by a conspicuous number of soft-bottom polychaetes (e.g., Prionospio multibranchiata and Ampharete acutifrons) and crustaceans (e.g., Corophium sextonae and Dynamene bidentatus), also known as detritivores. There were also major differences between the three habitats investigated. Consistent with its structural complexity, P. oceanica showed the highest species richness [E(S 50)] and the most diversified macrofaunal assemblages, both in terms of taxonomic groups and taxa associated with different substrates. The two seagrasses, however, showed a similar species composition and differed from Leaf litter for the exclusive presence of hard-bottom species (e.g., the tunicate Phallusia fumigata) and seagrass-associated species (e.g., the polychaete Syllis garciai and the decapod Paguristes syrtensis). In contrast, Leaf litter showed the most differences between the habitats, and was characterized by the bivalves Abra alba and Cerastoderma glaucum, not found in seagrass beds, and by Loripes lacteus and Ruditapes decussatus. Leaf litter also had the highest content of organic matter (26.7% ± 1.4) and total organic carbon (10.3% ± 0.4). Our results confirmed the facilitative role of living seagrasses, in particular P. oceanica, as related to their structural complexity, for numerous species from different substrates (e.g., hard bottom species). This study also showed that leaf litter beds act as a particular environment where sediment instability, leaf breakdown, and organic matter enrichment and decomposition strongly influence animal distribution. Finally, our results highlighted the ecological and trophic importance of seagrass-derived detritus and the associated macroinvertebrate detritivores within seagrass-dominated systems.

Keywords

Total Organic Carbon Leaf Litter Polychaete Substrate Affinity Facilitative Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge MC Gambi for her comments and discussion during an early stage of this work, and P Domenici for his advice and suggestion. We extend our thanks to two anonymous reviewers whose constructive comments were very helpful in improving the quality and the clarity of the manuscript. Research funded by the SALVA project (Studio multidisciplinare sulla Salute dell’Ambiente Lagunare e Valutazione delle interazioni con l’Ambiente marino costiero) of the Italian Ministry of Research (MIUR). PM was supported by the SIGLA project (Sistema per il Monitoraggio e la Gestione di Lagune ed Ambiente) of MIUR during the manuscript preparation. It is contribution number MPS-08002 of the EU Network of Excellence MarBEF.

References

  1. Abbiati M, Bianchi CN, Castelli A (1987) Polychaete vertical zonation along a littoral cliff in the Western Mediterranean. PSZNI Mar Ecol 8(1):33–48Google Scholar
  2. Borg JA, Rowden AA, Attrill MJ, Schembri PJ, Jones MB (2006) Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar Biol 149:667–677CrossRefGoogle Scholar
  3. Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403CrossRefGoogle Scholar
  4. Brito MC, Martin D, Núñez J (2005) Polychaetes associated to a Cymodocea nodosa meadow in the Canary Islands: assemblage structure, temporal variability and vertical distribution compared to other Mediterranean seagrass meadows. Mar Biol 146:467–481CrossRefGoogle Scholar
  5. Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Medit 7:167–190Google Scholar
  6. Cancemi G, Baroli M, De Falco G, Agostini S, Piergallini G, Guala I (2000) Cartografia integrata delle praterie marine superficiali come indicatore dell’impatto antropico sulla fascia costiera. Biol Mar Medit 7(1):509–516Google Scholar
  7. Cancemi G, Buia MC, Mazzella L (2002) Structure and growth dynamics of Cymodocea nodosa meadow. Sci Mar 66(4):365–373Google Scholar
  8. Castelli A (1985) Paraonidae (Annelida, Polychaeta) des fonds meubles infralittoraux des cotes toscanes. Cah Biol Mar 26:267–279Google Scholar
  9. Cebrian J, Duarte CM (2001) Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquat Bot 70:295–309CrossRefGoogle Scholar
  10. Cebrian CB, Ribeiro Da Cunha M, Sánchez Jerez P, Esplá AA (2001) Misidáceos asociados a fanerógamas marinas en el sudeste ibérico. Bol Inst Esp Oceanogr 17:97–106Google Scholar
  11. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. 2nd edn. PRIMER-E Ltd, PlymouthGoogle Scholar
  12. Como S, Magni P, Casu D, Floris A, Giordani G, Natale S, Fenzi GA, Signa G, De Falco G (2007) Sediment characteristics and macrofauna distribution along a human-modified inlet in the Gulf of Oristano (Sardinia, Italy). Mar Pollut Bull 54:733–744PubMedCrossRefGoogle Scholar
  13. Day JW (ed) (1967a) A monograph on the Polychaeta of Southern Africa. Part 1. Errantia. Trustees of the British Museum (Natural History) LondonGoogle Scholar
  14. Day JW (ed) (1967b) A monograph on the Polychaeta of Southern Africa. Part 2. Sedentaria. Trustees of the British Museum (Natural History) LondonGoogle Scholar
  15. De Falco G, Ferrari S, Cancemi G, Baroli M (2000) Relationship between sediment distribution and Posidonia oceanica seagrass. Geo Mar Lett 20:50–57CrossRefGoogle Scholar
  16. De Falco G, Molinaroli E, Baroli M, Bellacicco S (2003) Grain size and compositional trends of sediments from Posidonia oceanica meadows to beach shore, Sardinia, Western Mediterranean. Estuar Coast Shelf Sci 58(2):299–309CrossRefGoogle Scholar
  17. De Falco G, Magni P, Teräsvuori LMH, Matteucci G (2004) Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, western Mediterranean). Chem Ecol 20(Suppl 1):S367–S377CrossRefGoogle Scholar
  18. De Falco G, Baroli M, Murru E, Piergallini G, Cancemi G (2006) Sediment analysis evidences two different depositional phenomena influencing seagrass distribution in the Gulf of Oristano (Sardinia, Western Mediterranean). J Coast Res 22:1043–1050CrossRefGoogle Scholar
  19. Dimech M, Borg JA, Schembri PJ (2006) Motile macroinvertebrate assemblages associated with submerged Posidonia oceanica litter accumulations. Biol Mar Medit 13(4):130–133Google Scholar
  20. Dugan JE, Hubbardb DM, McCraryc MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58(Suppl 1):25–40CrossRefGoogle Scholar
  21. Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471CrossRefGoogle Scholar
  22. Fassari G (1998) Censimento dei Policheti dei mari Italiani: Opheliidae Malmgren, 1867. Atti Soc Tosc Sci Nat Mem 105:45–94Google Scholar
  23. Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Ann Rev 1:193–284Google Scholar
  24. Fauvel P (ed) (1923a) Fauna de France. Polychètes Errantes, Lechevalier Paris 5:1–448Google Scholar
  25. Fauvel P (ed) (1923b) Fauna de France. Polychètes Sedentaries, Lechevalier Paris 16:1–412Google Scholar
  26. Gallmetzer I, Pflugfelder B, Zekely J, Ott JA (2005) Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Mar Biol 147:517–523CrossRefGoogle Scholar
  27. Gambi MC, Giangrande A, Martinelli M, Chessa LA (1995) Polychaetes of a Posidonia oceanica bed off Sardinia (Italy): spatial and seasonal distribution and feeding guild analysis. Sci Mar 59:129–141Google Scholar
  28. Gambi MC, Conti G, Bremec CS (1998) Polychaete distribution, diversity and seasonality related to seagrass cover in shallow soft bottoms of the Tyrrhenian Sea (Italy). Sci Mar 62:1–17CrossRefGoogle Scholar
  29. Gambi MC, Borg JA, Buia MC, Di Carlo G, Pergent-Martini C, Pergent G, Procaccini G (eds) (2006) Proceedings Mediterranean Seagrass Workshop, Malta 29 May–4 June 2006. Biol Mar Medit 13(4):1–293Google Scholar
  30. Gee JM, Somerfield PJ (1997) Do mangrove diversity and leaf litter decay promote meiofaunal diversity? J Exp Mar Biol Ecol 218:13–33CrossRefGoogle Scholar
  31. Giangrande A (1986) Policheti dei rizomi di Posidonia oceanica (L.) Delile (Helobiae, Potamogetonaceae) di una prateria dell’isola di Ischia (Napoli). Atti Soc Tosc Sci Nat Mem 92:195–206Google Scholar
  32. Glemarec M (1966) Paraonidae de Bretagne. Description de Paradoneis armata nov. Sp. Polychaeta, paranoidae, new species, France, Bretagne, Atlantic. Vie Milieu 17(1):1045–1052Google Scholar
  33. Gray JS, Wu RS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238:249–279CrossRefGoogle Scholar
  34. Guelorget O, Perthuisot JP (1992) Paralic ecosystems. Vie Milieu 42(2):215–251Google Scholar
  35. Guidetti P, Lorenti M, Buia MC, Mazzella L (2002) Temporal dynamic and biomass partioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. PSZNI Mar Ecol 23(1):51–67CrossRefGoogle Scholar
  36. Holdich DM (1970) Distribution and habitat preferences of the Afro-European species of Dynamene (Crustacea: Isopoda). J Nat Hist 4:419–438CrossRefGoogle Scholar
  37. Hyland J, Balthis L, Karakassis I, Magni P, Petrov A, Shine J, Vestergaard O, Warwick R (2005) Organic carbon content of sediments as an indicator of stress in the marine benthos. Mar Ecol Prog Ser 295:91–103CrossRefGoogle Scholar
  38. Hyndes GA, Lavery PS (2005) Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuar Coast Shelf Sci 63:633–643CrossRefGoogle Scholar
  39. Ince R, Hyndes GA, Lavery PS, Vanderklift MA (2007) Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuar Coast Shelf Sci 74:77–86CrossRefGoogle Scholar
  40. Kitsos MS, Koukouras A (2003) Effects of a tidal current of graded intensity on the midlittoral hard substratum peracaridan fauna in the Aegean Sea. Crustaceana 76:295–306CrossRefGoogle Scholar
  41. Lanera P, Gambi MC (1993) Polychaete distribution in some Cymodocea nodosa meadows around the Island of Ischia (Gulf of Naples Italy). Oebalia 19:89–103Google Scholar
  42. Lardicci C (1989) Censimento dei policheti dei mari italiani Spionidae Grube, 1850. Atti Soc Tosc Sci Nat Mem 96:121–152Google Scholar
  43. Lardicci C, Como S, Corti S, Rossi F (2001) Recovery of the macrozoobenthic community after severe dystrophic crises in a Mediterranean coastal lagoon (Orbetello, Italy). Mar Pollut Bull 42(3):202–214PubMedCrossRefGoogle Scholar
  44. Lee SY (1999) The effect of mangrove leaf litter enrichment on macrobenthic colonization of defaunated sandy substrates. Estuar Coast Shelf Sci 49:703–712CrossRefGoogle Scholar
  45. Lepoint G, Cox AS, Dauby Y, Poulicek M, Gobert S (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar Biol Res 2:355–365CrossRefGoogle Scholar
  46. Light W (1978) Spionidae: Polychaeta, Annelida. In: Lee WL (ed), Invertebrates of the San Francisco Bay estuary system. The Bowwood Press, Pacific Grove, California, p 211Google Scholar
  47. Magni P, Micheletti S, Casu D, Floris A, De Falco G, Castelli A (2004) Macrofaunal community structure and distribution in a muddy coastal lagoon. Chem Ecol 20(Suppl 1):S397–S409CrossRefGoogle Scholar
  48. Magni P, Micheletti S, Casu D, Floris A, Giordani G, Petrov A, De Falco G, Castelli A (2005) Relationships between chemical characteristics of sediments and macrofaunal communities in the Cabras lagoon (western Mediterranean, Italy). Hydrobiologia 550:105–119CrossRefGoogle Scholar
  49. Magni P, De Falco G, Falugi C, Franzoni M, Monteverde M, Perrone E, Sgro M, Bolognesi C (2006) Genotoxicity biomarkers and acetylcholinesterase activity in natural populations of Mytilus galloprovincialis along a pollution gradient in the Gulf of Oristano (Sardinia, western Mediterranean). Environ Poll 142:65–72CrossRefGoogle Scholar
  50. Mancinelli G, Rossi L (2002) The influence of allochthonous leaf detritus on the occurrence of crustacean detritivores in the soft-bottom macrobenthos of the Po River delta area (northwestern Adriatic Sea). Estuar Coast Shelf Sci 54:849–861CrossRefGoogle Scholar
  51. Mancinelli G, Sabetta L, Basset A (2005) Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande, Apulia, SE Italy). Mar Biol 148:271–283CrossRefGoogle Scholar
  52. Marbà N, Cebrián J, Enrìquez S, Duarte CM (1996) Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Mar Ecol Prog Ser 133:203–215CrossRefGoogle Scholar
  53. Martin D, Pinedo S, Sarda R (2000) Distribution patterns and trophic structure of soft-bottom polychaete assemblages in a north-western Mediterranean shallow-water bay. Ophelia 53:1–17Google Scholar
  54. Mateo MA, Romero J (1996) Evaluating seagrass leaf litter decomposition: an experimental comparison between litter-bag and oxygen-uptake methods. J Exp Mar Biol Ecol 202:97–106CrossRefGoogle Scholar
  55. Mateo MA, Sánchez-Lizaso JL, Romero J (2003) Posidonia oceanica “banquettes”: a preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuar Coast Shelf Sci 56:85–90CrossRefGoogle Scholar
  56. Mazzella L, Scipione MB, Buia MC (1989) Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. PSZNI Mar Ecol 10(2):107–129Google Scholar
  57. Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. In: Plant-animals interactions in the marine benthos, John DM, Hawkins SJ, Price JH (eds) Systematics Association Special Volume, 46. Clarendon Press, Oxford, pp 165–187Google Scholar
  58. Mazzella L, Scipione MB, Gambi MC, Buia MC, Lorenti M, Zupo V, Cancemi G (1993) The Mediterranean seagrass Posidonia oceanica and Cymodocea nodosa. A comparative overview. The First International Conference MEDCOAST 93, Antalya, Turkey, pp 103–116Google Scholar
  59. Mollica E (1995) Censimento dei Policheti dei mari Italiani: Sphaerodoridae Malmgren, 1867. Atti Soc Tosc Sci Nat Mem 102:55–58Google Scholar
  60. Morrisey DJ, Skilleter GA, Ellis JI, Burns BR, Kemp CE, Burt K (2003) Differences in benthic fauna and sediment among mangrove (Avicennia marine var. australasica) stands of different ages in New Zealand. Estuar Coast Shelf Sci 56:581–592CrossRefGoogle Scholar
  61. Norkko J, Bonsdorff E, Norkko A (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: Species specific responses to a transient resource. J Exp Mar Biol Ecol 248:79–104PubMedCrossRefGoogle Scholar
  62. Nunez J, San Martin G, Brito M (1992) Exogoninae (Polychaeta: Syllidae) from the Canary Islands. Sci Mar 56(1):43–52Google Scholar
  63. Orth RJ, Heck KL Jr, van Motfrans J (1984) Faunal communities in seagrass beds: a review of the influence of the plant structure and prey characteristics on predator-prey relationships. Estuaries 7(4):339–350CrossRefGoogle Scholar
  64. Parapar J, San Martin G, Besteiro C, Urgorri V (1994) Aspectos sistemàticos y ecòlogicos de las subfamilias Eusyllinae y Exogoninae (Polychaeta, Syllidae) en la Rìa de Ferrol (Galicia, NO Espana). Bol R Soc Esp Hist Nat 91(1–4):91–101Google Scholar
  65. Parenzan P (ed) (1974) Carta d’identità delle conchiglie del Mediterraneo. Vol II. Bivalvi. Parte 1. Bias Taras TarantoGoogle Scholar
  66. Parenzan P (ed) (1976) Carta d’identità delle conchiglie del Mediterraneo. Vol II. Bivalvi. Parte 2. Bias Taras TarantoGoogle Scholar
  67. Pérez M, Mateo MA, Alcoverro T, Romero J (2001) Variability in detritus stocks in beds of the seagrass Cymodocea nodosa. Bot Mar 44:523–531CrossRefGoogle Scholar
  68. Pipitone C (1998) Paguristes syrtensis de Saint Laurent, 1971 (Decapoda: Diogenidae) from the coastal waters of southwestern Sicily, Mediterranean Sea. J Nat Hist 32:1741–1746CrossRefGoogle Scholar
  69. Riedl R (ed) (1986) Fauna y Flora del Meditérraneo. Ediciones Omega, S.A. Barcelona, pp 439–547Google Scholar
  70. Rosenberg R, Blomqvist M, Nilsson HC, Cederwall H, Dimming A (2004) Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within the European Union Water Framework Directive. Mar Pollut Bull 49:728–739PubMedCrossRefGoogle Scholar
  71. Rossi F (2007) Recycle of buried macroalgal detritus in sediments: use of dual-labelling experiments in the field. Mar Biol 150:1073–1081CrossRefGoogle Scholar
  72. Rossi F, Underwood AJ (2002) Small-scale disturbance and increased nutrients as influences on intertidal macrobenthic assemblages: experimental burial of wrack in different intertidal environments. Mar Ecol Prog Ser 241:29–39CrossRefGoogle Scholar
  73. Ruffo S (ed) (1982) The Amphipoda of Mediterranean, parte 1, Gammaridae (Acanthonomatidae to Gammaridea). Mem Inst Oceanogr Fond Albert Ier Prince de Monaco 13:1–364Google Scholar
  74. San Martin G (1984) Estidio biogeografico, faunistico y sistematico de los Poliquetos de la Familia Silidos (Syllidae: Polychaeta) en Baleares. Doctoral thesis. Editorial de la Universitad Complutense de MadridGoogle Scholar
  75. San Martin G (1992) Syllis savigny in Lamarck, 1818 (Polychaeta: Syllidae: Syllinae) from Cuba, the Gulf of Mexico, Florida and North Carolina, with a revision of several species described by Verrill. Bull Mar Sci 51(2):167–196Google Scholar
  76. Sánchez-Jerez P, Cebrián CB, Esplá AAR (1999) Comparison of the epifauna spatial distribution in Posidonia oceanica, Cymodocea nodosa and unvegetated bottoms: importance of meadow edges. Acta Oecol 20(4):391–405CrossRefGoogle Scholar
  77. Scipione MB, Gambi MC, Lorenti M, Russo GF, Zupo V (1996) Vagile fauna of the leaf stratum of Posidonia oceanica and Cymodocea nodosa in the Mediterranean Sea, Seagrass Biology. In: Proceedings of an international workshop, Rottnest Island, Western Australia, pp 249–260Google Scholar
  78. Sfriso A, Birkemeyer T, Ghetti PF (2001) Benthic macrofauna changes in areas of Venice lagoon populated by seagrasses or seaweeds. Mar Environ Res 52(4):323–349PubMedCrossRefGoogle Scholar
  79. Snelgrove PVR, Butman CA (1994) Animal-sediment relationships revisited: cause versus impact effect. Oceanogr Mar Biol Ann Rev 32:111–177Google Scholar
  80. Somaschini A, Gravina MF, Ardizzone GD (1994) Polychaete depth distribution in a Posidonia oceanica bed (rhizome and matte strata) and neighboring soft and hard bottoms. PSZNI: Mar Ecol 15:133–151Google Scholar
  81. Sordino P (1989) Censimento dei Policheti dei mari Italiani: Hesionidae Sars, 1862. Atti Soc Tosc Sci Nat Mem 96:31–52Google Scholar
  82. Terlizzi A, Russo GF (1998) The molluscan taxocoene of differently-exposed Cymodocea nodosa beds: year-long structural patterns and sampling methods. Boll Malacol 33:77–82Google Scholar
  83. Tyson RV (ed) (1995) Sedimentary organic matter. Chapman & Hall, LondonGoogle Scholar
  84. Underwood AJ (ed) (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  85. Vetter EW (1995) Detritus-based patches of high secondary production in the nearshore benthos. Mar Ecol Prog Ser 120:251–262CrossRefGoogle Scholar
  86. Vizzini S, Sarà G, Michener RH, Mazzola A (2002) The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecol 23:277–285CrossRefGoogle Scholar
  87. Zuhlke R (2001) Polychaete tubes create ephemeral community patterns: Lanice conchilega (Pallas, 1766) associations studied over six years. J Sea Res 46(3–4):261–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Como
    • 1
  • P. Magni
    • 1
    • 2
    Email author
  • M. Baroli
    • 1
  • D. Casu
    • 3
  • G. De Falco
    • 1
    • 2
  • A. Floris
    • 4
  1. 1.IMC, International Marine CentreOristanoItaly
  2. 2.CNR, National Research CouncilIAMC, Institute for Coastal Marine Environment c/o IMC, International Marine CentreOristanoItaly
  3. 3.Dip. di Botanica ed Ecologia vegetaleUniversità di SassariSassariItaly
  4. 4.Dip. di Zoologia e Genetica evoluzionisticaUniversità di SassariSassariItaly

Personalised recommendations