Skip to main content
Log in

Myth versus reality: Do parabolic sorption isotherm models reflect actual wood–water thermodynamics?

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

It has been known for over 35 years that commonly used sorption isotherm models fail to correctly predict wood–water properties such as heat of sorption. Despite this, their use to determine thermodynamic quantities and monolayer moisture contents persists and in fact is increasing in frequency. In this paper, we recommend the use of the “ABC isotherm,” which is mathematically equivalent to sorption isotherm models commonly used for wood but has the added benefits of simplicity, avoidance of a conceptual image of water sorption that is contradicted by measurements, and avoidance of any additional step of identifying quantities that are physically incorrect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RB (1946) Modifications of the Brunauer, Emmett, and Teller equation. J Am Chem Soc 68:686–691

    Article  CAS  Google Scholar 

  • Anderson RB, Hall WK (1948) Modifications of the Brunauer, Emmett, and Teller equation II. J Am Chem Soc 70:1727–1734. https://doi.org/10.1021/ja01185a017

    Article  CAS  PubMed  Google Scholar 

  • Araujo CD, Avramidis S, Mackay AL (1994) Behavior of solid wood and bound water as a function of moisture-content a proton magnetic-resonance study. Holzforschung 48:69–74

    Article  CAS  Google Scholar 

  • Boquet R, Chirife J, Iglesias HA (1980) Technical note—on the equivalence of isotherm equations. J Food Technol 15:345–349

    Article  Google Scholar 

  • Bratasz Ł, Kozłowska A, Kozłowski R (2012) Analysis of water adsorption by wood using the Guggenheim–Anderson-de Boer equation. Eur J Wood Prod 70:445–451. https://doi.org/10.1007/s00107-011-0571-x

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Chauhan SS, Aggarwal P, Karmarkar A, Pandey KK (2001) Moisture adsorption behaviour of esterified rubber wood (Hevea brasiliensis). Holz Roh Werkst 59:250–253

    Article  CAS  Google Scholar 

  • Chen C-M, Wangaard FF (1968) Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci Technol 2:177–187

    Google Scholar 

  • De Boer JH (1953) The dynamical character of adsorption. Clarendon Press, Oxford

    Google Scholar 

  • Dent RW (1977) Multilayer theory for gas sorption. 1 Sorption of a single gas. Text Res J 47:145–152

    Article  CAS  Google Scholar 

  • Dieste A, Krause A, Militz H (2008) Modification of Fagus sylvatica (L.) with 1,3-dimethylol-4,5-dihydroxyethylene urea (DMDHEU): Part 1. Estimation of heat adsorption by the isosteric method (Hailwood–Horrobin model) and by solution calorimetry. Holzforschung 62:577–583

    Article  CAS  Google Scholar 

  • Esteban LG, Fernandez FG, Casasus AG, De Palacios PD, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317

    Article  Google Scholar 

  • Esteban LG, de Palacios P, Fernández FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121

    CAS  Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751. https://doi.org/10.1515/hf.2008.106

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± A 40 BP. Wood Sci Technol 43:679–690. https://doi.org/10.1007/s00226-009-0261-6

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Garcia-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64:371–377. https://doi.org/10.1016/j.ibiod.2010.01.010

    Article  CAS  Google Scholar 

  • Guggenheim EA (1966) Applications of statistical mechanics. Oxford University Press, New York

    Google Scholar 

  • Hailwood AJ, Horrobin S (1946) Absorption of water by polymers: analysis in terms of a simple model. Trans Faraday Soc 42:B084–B092. https://doi.org/10.1039/TF946420B084

    Article  Google Scholar 

  • Hartley ID (2000) Application of the GAB sorption isotherm model to Klinki Pine (Araucaria klinkii Lauterb.). Holzforschung 54:661–663. https://doi.org/10.1515/hf.2000.111

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. https://doi.org/10.1002/app.29725

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  CAS  Google Scholar 

  • Jalaludin Z, Hill CAS, Samsi HW, Husain H, Xie Y (2010a) Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood–Horrobin model. Holzforschung 64:763–770

    Article  CAS  Google Scholar 

  • Jalaludin Z, Hill CAS, Xie Y, Samsi HW, Husain H, Awang K, Curling SF (2010b) Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok. Wood Mater Sci Eng 5:194–203

    Article  CAS  Google Scholar 

  • Kelsey K (1957) The sorption of water vapour by wood Aust J Appl Sci 8

  • Krupińska B, Strømmen I, Pakowski Z, Eikevik TM (2007) Modeling of sorption isotherms of various kinds of wood at different temperature conditions. Dry Technol 25:1463–1470. https://doi.org/10.1080/07373930701537062

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Murata K, Watanabe Y, Nakano T (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197. https://doi.org/10.3390/ma6094186

    Article  PubMed  PubMed Central  Google Scholar 

  • Olek W, Majka J, Czajkowski L (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191. https://doi.org/10.1515/hf-2011-0260

    Article  CAS  Google Scholar 

  • Papadopoulos AN (2005) Moisture adsorption isotherms of two esterified Greek hardwoods. Holz Roh Werkst 63:123–128

    Article  CAS  Google Scholar 

  • Papadopoulos A (2011) Sorption studies of chemically modified elm wood with acetic or maleic anhydride. J Indian Acad Wood Sci 8:32–36. https://doi.org/10.1007/s13196-011-0020-9

    Article  Google Scholar 

  • Papadopoulos AN (2012) Sorption of acetylated pine wood decayed by brown rot, white rot and soft rot: different fungi—different behaviours. Wood Sci Technol 46:919–926. https://doi.org/10.1007/s00226-011-0450-y

    Article  CAS  Google Scholar 

  • Papadopoulos A, Hill C (2003) The sorption of water vapour by anhydride modified softwood. Wood Sci Technol 37:221–231

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Avramidis S, Elustondo D (2005) The sorption of water vapour by chemically modified softwood: analysis using various sorption models. Wood Sci Technol 39:99–112

    Article  CAS  Google Scholar 

  • Popper R, Bariska M (1972) Acylation of wood. 1. Sorption behavior of water vapor. Holz Roh Werkst 30:289–294

    Article  CAS  Google Scholar 

  • Popper R, Niemz P, Eberle G (2005) Untersuchungen zum Sorptions- und Quellungsverhalten von thermisch behandeltem Holz (Investigations on the sorption and swelling properties of thermally treated wood). Holz Roh Werkst 63:135–148. https://doi.org/10.1007/s00107-004-0554-2 (in German)

    Article  CAS  Google Scholar 

  • Popper R, Niemz P, Torres M (2006) Influence of the extractives of selected extraneous woods on the equilibrium moisture content. Holz Roh Werkst 64:491–496

    Article  CAS  Google Scholar 

  • Scott J (2007) Ferroelectrics go bananas. J Phys Condens Matter 20:021001

    Article  Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Simón C, Esteban LG, de Palacios P, Fernández FG, García-Iruela A, Martín-Sampedro R, Eugenio ME (2017) Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci Technol 51:517–534. https://doi.org/10.1007/s00226-016-0884-3

    Article  CAS  Google Scholar 

  • Simpson W (1980) Sorption theories applied to wood. Wood Fiber Sci 12:183–195

    Google Scholar 

  • Skaar C (1988) Wood–water relations. Springer, New York

    Book  Google Scholar 

  • Spalt H (1958) The fundamentals of water vapor sorption by wood. For Prod J 8:288–295

    CAS  Google Scholar 

  • Willems W (2015) A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69:67–75

    Article  CAS  Google Scholar 

  • Xie YJ, Hill CAS, Xiao ZF, Jalaludin Z, Militz H, Mai C (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117:1674–1682

    CAS  Google Scholar 

  • Yasuda R, Minato K, Norimoto M (1994) Chemical modification of wood by nonformaldehyde cross-linking reagents. 2 Moisture adsorption and creep-properties. Wood Sci Technol 28:209–218

    Article  CAS  Google Scholar 

  • Zaihan J, Hill CAS, Curling S, Hashim WS, Hamdan H (2009) Moisture adsorption isotherms of Acacia mangium and Endospermum malaccense using dynamic vapour sorption. J Trop For Sci 21:277–285

    Google Scholar 

  • Zaihan J, Hill CAS, Hashim WS, Dahlan JM, Sun DY (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J Trop For Sci 23:97–105

    Google Scholar 

  • Zelinka SL, Glass SV (2010) Water vapor sorption isotherms for southern pine treated with several waterborne preservatives ASTM. J Test Eval 38:80–88

    Google Scholar 

Download references

Acknowledgements

The authors thank JF Scott’s paper (2007) playfully criticizing data published on supposedly ferroelectric materials for an inspiration to this paper. SLZ and EET are thankful for the traveling grant for SLZ from “IGN International Academy,” while EET acknowledges funding from the VILLUM FONDEN postdoc program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Zelinka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelinka, S.L., Glass, S.V. & Thybring, E.E. Myth versus reality: Do parabolic sorption isotherm models reflect actual wood–water thermodynamics?. Wood Sci Technol 52, 1701–1706 (2018). https://doi.org/10.1007/s00226-018-1035-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1035-9

Navigation