Skip to main content
Log in

The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We show that for several solution concepts for finite n-player games, where n ≥ 3, the task of simply verifying its conditions is computationally equivalent to the decision problem of the existential theory of the reals. This holds for trembling hand perfect equilibrium, proper equilibrium, and CURB sets in strategic form games and for (the strategy part of) sequential equilibrium, trembling hand perfect equilibrium, and quasi-perfect equilibrium in extensive form games of perfect recall. For obtaining these results we first show that the decision problem for the minmax value in n-player games, where n ≥ 3, is also equivalent to the decision problem for the existential theory of the reals. Our results thus improve previous results of NP-hardness as well as Sqrt-Sum-hardness of the decision problems to completeness for \({\exists {\mathbb {R}}}\), the complexity class corresponding to the decision problem of the existential theory of the reals. As a byproduct we also obtain a simpler proof of a result by Schaefer and Štefankovič giving \({\exists {\mathbb {R}}}\)-completeness for the problem of deciding existence of a probability constrained Nash equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This crucial point of the reduction by Hansen, Miltersen and Sørensen was unfortunately omitted in the paper [26].

References

  1. Basu, K., Weibull, J.W.: Strategy subsets closed under rational behavior. Econ. Lett. 36(2), 141–146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benisch, M., Davis, G.B., Sandholm, T.: Algorithms for rationalizability and CURB sets. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence, pp. 598–604. AAAI Press (2006)

  3. Bilò, V., Mavronicolas, M.: A catalog of \({\exists {\mathbb {R}}}\)-complete decision problems about Nash equilibria in multi-player games. In: Ollinger, N., Vollmer, H. (eds.) STACS 2016, LIPIcs, vol. 47, pp. 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

  4. Blömer, J.: Computing sums of radicals in polynomial time. In: 32Nd Annual Symposium on Foundations of Computer Science (FOCS 1991), pp. 670–677. IEEE Computer Society Press (1991)

  5. Borgs, C., Chayes, J., Immorlica, N., Kalai, A.T., Mirrokni, V., Papadimitriou, C.: The myth of the folk theorem. Games and Economic Behavior 70(1), 34–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bubelis, V.: On equilibria in finite games. Int. J. Game Theory 8(2), 65–79 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bürgisser, P., Cucker, F.: Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math. 9(2), 135–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 460–467. ACM (1988)

  10. Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium. In: 47Th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272. IEEE Computer Society Press (2006)

  11. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games and Economic Behavior 63(2), 621–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. van Damme, E.: A relation between perfect equilibria in extensive form games and proper equilibria in normal form games. Int. J. Game Theory 13, 1–13 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Datta, R.S.: Universality of Nash equilibria. Math. Oper. Res 28(3), 424–432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Etessami, K.: The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game of perfect recall. arXiv:1408.1233 (2014)

  16. Etessami, K., Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The complexity of approximating a trembling hand perfect equilibrium of a multi-player game in strategic form. In: Lavi, R. (ed.) SAGT 2014, LNCS, vol. 8768, pp. 231–243. Springer (2014)

  17. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farina, G., Gatti, N.: Extensive-form perfect equilibrium computation in two-player games. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 502–508. AAAI Press (2017)

  19. Garg, J., Mehta, R., Vazirani, V.V., Yazdanbod, S.: ETR-completeness for decision versions of multi-player (symmetric) Nash equilibria. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015, LNCS, vol. 9134, pp. 554–566. Springer (2015)

  20. Gatti, N., Panozzo, F.: New results on the verification of Nash refinements for extensive-form games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 813–820. International Foundation for Autonomous Agents and Multiagent Systems (2012)

  21. Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games and Economic Behavior 1(1), 80–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grigor’ev, D.Y., Vorobjov, N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5(1–2), 37–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, K.A.: The real computational complexity of minmax value and equilibrium refinements in multi-player games. In: Bilò, V., Flammini, M. (eds.) SAGT 2017, LNCS, vol. 10504, pp. 119–130. Springer (2017)

  24. Hansen, K.A., Hansen, T.D., Miltersen, P.B., Sørensen, T.B.: Approximability and parameterized complexity of minmax values. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008, LNCS, vol. 5385, pp. 684–695. Springer (2008)

  25. Hansen, K.A., Lund, T.B.: Computational complexity of proper equilibrium. In: Tardos, E., Elkind, E., Vohra, R. (eds.) ACM Conference on Electronic Commerce, EC ’18, pp 113–130. ACM, New York (2018)

  26. Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. In: Kontogiannis, S.C., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010, LNCS, vol. 6386, pp. 198–209. Springer (2010)

  27. Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuhn, H.W.: Extensive games and the problem of information. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp 193–216. Princeton University Press, Princeton (1953)

  29. Mertens, J.F.: Two examples of strategic equilibrium. Games and Economic Behavior 8(2), 378–388 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miltersen, P.B., Sørensen, T.B.: Computing a quasi-perfect equilibrium of a two-player game. Econ. Theory 42(1), 175–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theory 15, 133–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nash, J.: Non-cooperative games. Ann. Math. 2(54), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nicola, G., Mario, G., Fabio, P.: Further results on verification problems in extensive-form games. Working Papers 347, University of Milano-Bicocca Department of Economics (2016)

  34. Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009, LNCS, vol. 5849, pp. 334–344. Springer (2010)

  35. Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, New York (2013)

  36. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential theory of the reals. Theory of Computing Systems 60(2), 172–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Selten, R.: A reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4, 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry And Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554. DIMACS/AMS (1990)

  39. Sørensen, T.B.: Computing a proper equilibrium of a bimatrix game. In: Faltings, B., Leyton-Brown, K., Ipeirotis, P. (eds.) ACM Conference on Electronic Commerce, EC ’12, pp. 916–928. ACM (2012)

  40. van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  41. Vorob’ev, N.N.: Estimates of real roots of a system of algebraic equations. J. Sov. Math. 34(4), 1754–1762 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristoffer Arnsfelt Hansen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version [23] of this paper appeared in the proceedings of the 10th International Symposium on Algorithmic Game Theory (SAGT 2017).

This article is part of the Topical Collection on Special Issue on Algorithmic Game Theory (SAGT 2017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, K.A. The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games. Theory Comput Syst 63, 1554–1571 (2019). https://doi.org/10.1007/s00224-018-9887-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-9887-9

Keywords

Navigation