Skip to main content
Log in

Monotone Paths in Geometric Triangulations

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

(I) We prove that the (maximum) number of monotone paths in a geometric triangulation of n points in the plane is O(1.7864n). This improves an earlier upper bound of O(1.8393n); the current best lower bound is Ω(1.7003n). (II) Given a planar geometric graph G with n vertices, we show that the number of monotone paths in G can be computed in O(n2) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Notes

  1. Refer to the .c file and the A within the source at arXiv:http://arXiv.org/abs/1608.04812.

  2. The algorithm has been revised, as some of the ideas were implemented incorrectly in the earlier conference version.

  3. The argument of a vector \(\mathbf {u}\in \mathbb {R}^{2}\setminus \{\mathbf {0}\}\) is the angle measure in [0, 2π) of the minimum counterclockwise rotation that carries the positive x-axis to the ray spanned by u.

References

  1. Adler, I., Papadimitriou, C., Rubinstein, A.: On simplex pivoting rules and complexity theory. In: Proceedings of the 17th IPCO, LNCS 8494, Springer (2014)

  2. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. Ann. Discret. Math. 12, 9–12 (1982)

    MathSciNet  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles in planar graphs. In: Proceedings of the 13th COCOON, LNCS 4598, Springer (2007)

  5. Dumitrescu, A., Löffler, M., Schulz, A., Tóth, C. s. D.: Counting carambolas. Graphs Combin. 32(3), 923–942 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dumitrescu, A., Rote, G., Tóth, Cs. D.: Monotone paths in planar convex subdivisions and polytopes. In: Discrete Geometry and Optimization, vol. 69 of Fields Institute of Communications, Springer, pp. 79–104 (2013)

  7. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C. s. D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discret. Math. 27(2), 802–826 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumitrescu, A., Tóth, C. s. D.: Computational Geometry Column 54. SIGACT News Bullet. 43(4), 90–97 (2012)

    Article  Google Scholar 

  9. Dumitrescu, A., Tóth, C. s. D.: Convex polygons in geometric triangulations. Combin. Probab. Comput. 26(5), 641–659 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. García, A., Noy, M., Tejel, A.: Lower bounds on the number of crossing-free subgraphs of K N . Comput. Geom. 16(4), 211–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gärtner, B., Kaibel, V.: Two new bounds for the random-edge simplex-algorithm. SIAM J. Discret. Math. 21(1), 178–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaibel, V., Mechtel, R., Sharir, M., Ziegler, G.M.: The simplex algorithm in dimension three. SIAM J. Comput. 34(2), 475–497 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalai, G.: Upper bounds for the diameter and height of graphs of convex polyhedra. Discret. Comput. Geom. 8(4), 363–372 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalai, G.: Polytope skeletons and paths. In: Handbook of Discrete and Computational Geometry Goodman, J., O’Rourke, J., Tóth, C. D. (eds), Chapter 19, pp. 505–532, 3rd edn, CRC Press, Boca Raton (2017)

  15. Klee, V.: Paths on polyhedra I. J. SIAM 13(4), 946–956 (1965)

    MathSciNet  MATH  Google Scholar 

  16. van Kreveld, M., Löffler, M., Pach, J.: How many potatoes are in a mesh?, in Proc. 23rd ISAAC, LNCS 7676, Springer, pp. 166–176 (2012)

  17. Matoušek, J., Szabó, T.: RANDOM EDGE can be exponential on abstract cubes. Adv. Math. 204(1), 262–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46, 39–47 (2004). Corrected version: arXiv:http://arXiv.org/abs/1101.0967,2011

    Article  MathSciNet  MATH  Google Scholar 

  19. Razen, A., Snoeyink, J., Welzl, E.: Number of crossing-free geometric graphs vs. triangulations. Electron. Notes Discret. Math. 31, 195–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Santos, F.: Recent progress on the combinatorial diameter of polytopes and simplicial complexes. TOP 21(3), 426–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Combin. 18, P70 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Sharir, M., Sheffer, A.: Counting plane graphs: cross-graph charging schemes. Combin. Probab. Comput. 22(6), 935–954 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Combin. Theory, Ser. A 120(4), 777–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheffer, A.: Numbers of plane graphs, https://adamsheffer.wordpress.com/numbers-of-plane-graphs/ (version of April, 2016)

  27. Todd, M.J.: The monotonic bounded Hirsch conjecture is false for dimension at least 4. Math. Oper. Res. 5(4), 599–601 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Todd, M.J.: An improved Kalai-Kleitman bound for the diameter of a polyhedron. SIAM J. Discret. Math. 28, 1944–1947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ziegler, G.M.: Lectures on Polytopes, vol. 152 of GTM, Springer, pp. 83–93 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritankar Mandal.

Additional information

This article is part of the Topical Collection on Special Issue on Combinatorial Algorithms

The work of Csaba D. Tóth was supported in part by the NSF awards CCF-1422311 and CCF-1423615.

An extended abstract of this paper appeared in the Proceedings of the 27th International Workshop on Combinatorial Algorithms (IWOCA 2016), LNCS 9843, pp. 411–422, Springer International Publishing, 2016.

Appendix A: Extremal configurations

Appendix A: Extremal configurations

The groups of 4 vertices with 12 and 11 patterns

There are exactly 4 groups with exactly 12 incidence patterns (modulo reflections about the x-axis); see Fig. 35.

  • I(B1): , 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3, 4.

  • I(B2): , 1234, 123, 124, 134, 13, 234, 23, 24, 34, 3, 4.

  • I(B3): , 1234, 123, 124, 12, 134, 13, 1, 23, 234, 24, 2.

  • I(B4): , 1234, 123, 124, 12, 1, 23, 234, 24, 2, 34, 3.

Fig. 35
figure 35

B1–B4 are the only four groups with 12 incidence patterns

There are exactly 20 groups with exactly 11 incidence patterns (modulo reflections about the x-axis); see Fig. 36.

  • I(C1) : , 1234, 123, 134, 13, 1, 234, 23, 34, 3, 4.

  • I(C2) : , 1234, 123, 12, 1, 234, 23, 2, 34, 3, 4.

  • I(C3) : , 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3.

  • I(C4) : , 1234, 123, 134, 13, 14, 234, 23, 34, 3, 4.

  • I(C5) : , 1234, 123, 12, 134, 13, 14, 234, 23, 2, 4.

  • I(C6) : , 1234, 123, 134, 13, 14, 1, 234, 23, 34, 3.

  • I(C7) : , 1234, 123, 12, 134, 13, 14, 1, 234, 23, 2.

  • I(C8) : , 1234, 123, 124, 134, 13, 234, 23, 24, 34, 3.

  • I(C9) : , 1234, 123, 124, 134, 13, 1, 234, 23, 24, 4.

  • I(C10) : , 1234, 123, 124, 12, 1, 234, 23, 24, 2, 4.

  • I(C11) : , 1234, 123, 124, 14, 234, 23, 24, 34, 3, 4.

  • I(C12) : , 1234, 123, 124, 12, 14, 234, 23, 24, 2, 4.

  • I(C13) : , 1234, 123, 124, 14, 1, 234, 23, 24, 34, 3.

  • I(C14) : , 1234, 123, 124, 12, 14, 1, 234, 23, 24, 2.

  • I(C15) : , 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3.

  • I(C16) : , 1234, 123, 124, 12, 234, 23, 24, 2, 34, 3.

  • I(C17) : , 1234, 123, 124, 12, 234, 23, 24, 2, 34, 3.

  • I(C18) : , 1234, 123, 124, 12, 234, 23, 24, 2, 34, 3.

  • I(C19) : , 1234, 123, 124, 12, 134, 13, 234, 23, 24, 2.

  • I(C20) : , 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3.

Fig. 36
figure 36

C1–C20 are the only 20 groups with 11 incidence patterns

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumitrescu, A., Mandal, R. & Tóth, C.D. Monotone Paths in Geometric Triangulations. Theory Comput Syst 62, 1490–1524 (2018). https://doi.org/10.1007/s00224-018-9855-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-9855-4

Keywords

Navigation